SITE INSPECTION REPORT

FINAL

CAPE CANAVERAL AIR FORCE STATION, FL

Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas Environmental Programs Worldwide

Contract FA8903-16-D-0027 Task Order 0004

Prepared for: Air Force Civil Engineer Center JBSA Lackland, Texas

December 2017

Submitted by:

FINAL

SITE INSPECTION REPORT

SITE INSPECTION OF AQUEOUS FILM FORMING FOAM (AFFF) RELEASE AREAS ENVIRONMENTAL PROGRAMS WORLDWIDE

CAPE CANAVERAL AIR FORCE STATION, FLORIDA

Project No. RPMO20167118

Prepared for: Air Force Civil Engineer Center Joint Base San Antonio – Lackland, Texas

Prepared by:

Amec Foster Wheeler Programs, Inc.

Contract FA8903-16-D-0027 Task Order 0004

December 2017

This page intentionally left blank.

TABLE OF CONTENTS

ACRON	YMS		
EXECUT	IVE SUN	/MARY.	vi
1.0	INTROE 1.1 1.2 1.3	PER- AN PROJEC	I
2.0	AFFF RE 2.1 2.2 2.3	SITE LO	AREA BACKGROUND
3.0	FIELD A 3.1		S AND ANALYTICAL PROTOCOL
4.0	MIGRA 4.1	•	POSURE PATHWAYS AND TARGETS 11 JRFACE AND SUBSURFACE) EXPOSURE PATHWAY 11 Local Geologic Setting 11 Soil Exposure Pathways and Targets 11 Soil Exposure Conclusions 11
	4.24.3	4.2.1 4.2.2 4.2.3	DWATER MIGRATION PATHWAY 12 Local Hydrogeologic Setting 12 Groundwater Exposure Pathways and Targets 12 Groundwater Migration Pathway Conclusions 13 NT EXPOSURE PATHWAY 13 Sediment Exposure Pathways and Targets 13
	4.3	4.3.2	Sediment Exposure Conclusions 13 SE WATER EXPOSURE PATHWAY 13 Surface Water Exposure Pathways and Targets 13 Surface Water Exposure Conclusions 13
5.0	SUMM	ARY AND	CONCLUSIONS
6.0	REFERE	NCES	

, AFFF Release Area 1

, AFFF Release Area 1

, AFFF Release Area 1

AFFF Release Area 1

AFFF Release Area 1

FIGURES

- Figure 2.1-1 Installation Location Map
- Figure 2.3-1 AFFF Release Areas
- Figure 3.0-1 AFFF Release Area 1 Cross-Section A A'
- Figure 3.0-2 Groundwater Elevations, Hangar F
- Figure 3.1-1 Sampling Locations, Hangar F
- Figure 3.1-2 PFAS in Soil, Hangar F
- Figure 3.1-3 PFAS in Groundwater, Hangar F
- Figure 3.1-4 PFAS in Sediment, Hangar F

Table 1.1-1 **Regulatory Screening Values** (Page 3 in Report) **Monitoring Well Construction Details** (Tables Section) Table 3.0-1 Table 3.0-2 **Groundwater Elevations** (Tables Section) Summary of Soil Analytical Testing Results Table 3.1-1 (Tables Section) Table 3.1-2 Summary of Soil General Chemistry Analytical Testing Results (Tables Section) Table 3.1-3 Summary of Groundwater Analytical Testing Results (Tables Section) Table 3.1-4 Summary of Sediment Analytical Testing Results (Tables Section) Conceptual Site Model (Tables Section) Table 4.0-1 Table 5.0-1 Summary of PFAS Screening Level Exceedances (Page 16 in Report)

APPENDICES

- Appendix A Noblis (unpublished), UCLA and Arcadis (2014), SCF (2014), and VZ Technologies, LLC (2016) Data Tables and Figures
- Appendix B Photograph Logs
- Appendix C Field Forms
 - C-1 Field Activity Daily Logs
 - C-2 Daily PFAS Protocol Checklists
 - C-3 Tailgate Safety Meeting Reports
 - C-4 Soil Boring/Monitoring Well Records
 - C-5 Soil Sample Collection Logs
 - C-6 Screened Well Construction Forms
 - C-7 Well Development Logs
 - C-8 Water Quality Sampling Instrument Calibration Forms
 - C-9 Groundwater Sampling Logs
 - C-10 Sediment Sample Collection Log
- Appendix D Laboratory Analytical Reports (DVD)
- Appendix E Data Validation Report
- Appendix F IDW Non-hazardous Waste Manifest

ACRONYMS

AEI AFB AFCEC AFFF Amec Foster Wheeler API	Amec Foster Wheeler Environment & Infrastructure, Inc. Air Force Base Air Force Civil Engineer Center Aqueous Film Forming Foam Amec Foster Wheeler Programs, Inc. (API) and its affiliate Amec Foster Wheeler Environment & Infrastructure Inc. (AEI) collectively Amec Foster Wheeler Programs, Inc.
bgs	below ground surface
BRAC	Base Realignment and Closure
CCAAFB	Cape Canaveral Auxiliary Air Force Base
CCAFS	Cape Canaveral Air Force Station
CoC	Chain-of-Custody
DL	Detection Limit
DO	Dissolved Oxygen
DoD	Department of Defense
DPT	direct push technology
DQO	data quality objective
EC	Emerging Contaminants
FDEP	Florida Department of Environmental Protection
FTA	Fire Training Area
FTS	Fluorotelomer Sulfonate
HA	Health Advisory
HDPE	high-density polyethylene
HGL	HydroGeoLogic, Inc.
IDW	Investigation-Derived Waste
IRP	Installation Restoration Program
ISWP	Installation-Specific Work Plan
LC-MS/MS	Liquid Chromatography and Tandem Mass Spectrometry
LOQ	Limit of Quantification
μg/L	micrograms per liter
μg/kg	micrograms per kilogram
mg/kg	milligrams per kilogram
MS	matrix spike
MSD	matrix spike duplicate

NASA NEtFOSAA NMeFOSAA	National Aeronautics and Space Administration N-Ethyl perfluorooctanesulfonamidoacetic acid N-Methyl perfluorooctanesulfonamidoacetic acid
ORP	Oxidation-Reduction Potential
PA PFAS PFBS PFDA PFDOA PFHpA PFHxA PFHxS PFNA PFOA PFOS PFTA PFTDA PFUNA PPE	Preliminary Assessment per- and polyfluorinated alkyl substances perfluorobutanesulfonic acid Perfluorodecanoic acid Perfluorododecanoic acid perfluoroheptanoic acid perfluorohexanoic acid perfluorohexanesulfonic acid perfluorononanoic acid perfluorooctanoic acid perfluorooctanesulfonic acid Perfluorotetradecanoic acid Perfluorotetradecanoic acid Perfluorotridecanoic acid perfluoroundecanoic acid
PT PVC	proficiency testing
QPP	polyvinyl chloride Quality Program Plan
RSL	Regional Screening Level
SCF SI SIR SLC SOP S.U. SWMU	SES Construction and Fuel Services LLC Site Inspection Site Inspection Report Space Launch Complex Standard Operating Procedure Standard Unit Solid Waste Management Unit
тос	Total Organic Carbon
UCLA ULA USAF USEPA	University of California at Los Angeles United Launch Alliance United States Air Force United States Environmental Protection Agency
WWTF	Wastewater Treatment Facility

Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas Final Site Inspection Report, Cape Canaveral Air Force Station December 2017 Page vii

EXECUTIVE SUMMARY

This Site Inspection (SI) Report (SIR) was prepared by Amec Foster Wheeler Programs, Inc. (API), together with our affiliate Amec Foster Wheeler Environment & Infrastructure, Inc. (AEI), herein collectively referred to as Amec Foster Wheeler, under Contract No. FA8903-16-D-0027, Task Order 0004, to document the results of SI activities conducted at an aqueous film forming foam (AFFF) release area located at Cape Canaveral Air Force Station (CCAFS). The purpose of the SI was to determine, through environmental media sampling, if a release of per- and polyfluorinated alkyl substances (PFAS) has occurred at potential AFFF release areas identified by others during a Preliminary Assessment (PA) (HydroGeologic Inc. [HGL], 2015) or installation scoping visit conducted by Amec Foster Wheeler on 15 November 2016. The data presented in this SIR were collected and evaluated in accordance with the Final Installation-Specific Work Plan (ISWP) (Amec Foster Wheeler, 2017a) and the General Quality Program Plan (QPP) (Amec Foster Wheeler, 2017b).

PFAS are a class of synthetic organofluorine compounds that possess a chemical structure that gives them unique properties, including thermal stability and the ability to repel both water and oil. These chemical properties make them useful components in a wide variety of consumer and industrial products, including non-stick cookware, food packaging, waterproof clothing, fabric stain protectors, lubricants, paints, and firefighting foams such as AFFF. AFFF concentrate contains fluorocarbon surfactants to meet required performance standards for fire extinguishing agents (Department of Defense [DoD] Military Specification MIL-F-24385F [SH], Amendment 1, 5 August 1984). The United States Air Force (USAF) began purchasing and using AFFF containing PFAS (perfluorooctanesulfonic acid [PFOS] and/or perfluorooctanoic acid [PFOA]) for extinguishing petroleum fires and during firefighting training activities in 1970. AFFF was primarily used on USAF installations at fire training areas (FTAs), but may have also been used, stored or released from hangar fire suppression systems, at firefighting equipment testing and maintenance areas, and during emergency response actions for fuel spills and/or aircraft incidents.

The United States Environmental Protection Agency (USEPA) Office of Water issued lifetime drinking water Health Advisory (HA) values for PFOS and PFOA in May 2016 that replaced the 2009 Preliminary HA values. The HA values for PFOS and PFOA are 0.07 micrograms per liter (μ g/L) for each constituent; however, when these two chemicals co-occur in a drinking water source, a conservative and health-protective approach is recommended that compares the sum of the concentrations (PFOS + PFOA) to the HA value (0.07 μ g/L). HA values are not to be construed as legally enforceable federal standards and are subject to change as new information becomes available (USEPA, 2016a and 2016b). Although the USEPA has not established HA values for PFAS in soil, the USAF calculated a residential screening level of 1.26 milligrams per kilogram (mg/kg) for PFOS and PFOA in soil using the USEPA Regional Screening Level (RSL) calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search).

While PFOS and PFOA are the focus of the HA and provide specific targets for the USAF to address in the SI, USEPA has also derived RSL values for perfluorobutanesulfonic acid (PFBS) for which there is a Tier 2 toxicity value (Provisional Peer Review Toxicity Value) (USEPA, 2017a). Concentrations of PFBS detected in groundwater and soil were compared to the RSLs of 400 µg/L and 1,300 mg/kg, respectively.

Neither the USEPA nor Florida Department of Environmental Protection (FDEP) have issued HA values or promulgated standards for any other PFAS constituents to date.

CCAFS is located along the east-central Florida coastline, approximately 11 miles north of Patrick Air Force Base (AFB), in Brevard County, Florida, and encompasses approximately 15,800 acres or 25 square miles. The installation is located on a barrier island bordered by the Atlantic Ocean to the east and the Banana River to the west (HGL, 2015).

CCAFS was established in 1949 by the USAF with the primary mission to provide a site for launching National Aeronautics and Space Administration (NASA), DoD, and commercial satellites into various earth orbits or deep space mission. CCAFS is currently operated by the 45th Space Wing, headquartered at Patrick AFB, which conducts and supports space and missile launches and operates the Eastern Test Range. The primary mission at CCAFS today includes providing the launch site, facilities hardware, and support required to assemble, process, test, and launch various types of space boosters, upper stage, satellites, and payloads (http://www.spaceline.org/capehistory/2a.html).

Four AFFF release areas were recommended for SI at CCAFS based on research conducted during a PA by HGL (2015), as well as one AFFF release area that was added based on supplemental groundwater quality data provided during the installation scoping visit on 15 November 2016. The following AFFF release area was sampled under this SI since it had not been previously investigated for PFAS:

• AFFF Release Area 1: Hangar F

The following four AFFF release areas were not sampled under this SI since PFAS were identified at concentrations above regulatory screening levels during previous investigations:

- AFFF Release Area 2: Former FTA #2 (Solid Waste Management Unit [SWMU] C033, Installation Restoration Program [IRP] Site ID FT017) (Noblis, unpublished; University of California at Los Angeles [UCLA] and Arcadis, 2014).
- AFFF Release Area 3: Former Fire Station, Building 1608 (SWMU C088, IRP Site ID DP055) (UCLA and Arcadis, 2014).
- AFFF Release Area 4: Space Launch Complex (SLC)-17 (SWMU C055, IRP Site ID DP064) (SES Construction and Fuel Services LLC [SCF], 2014).
- AFFF Release Area 5: Regional Wastewater Treatment Facility (WWTF) Percolation Ponds (VZ Technologies, LLC, 2016).

The specific objectives of the SI activities at this release area were as follows:

- Determine if PFAS are present in soil, sediment, groundwater, and/or surface water at the AFFF release area selected for SI or investigated previously by others;
- Determine if PFOS and PFOA concentrations in soil exceed the calculated RSL of 1.26 mg/kg, based on a residential exposure scenario, and PFBS concentrations in soil exceed the USEPA RSL of 1,300 mg/kg, based on a residential exposure scenario;

- Determine if concentrations of PFOS, PFOA, or the sum of PFOS and PFOA, in groundwater and surface water exceed the USEPA HA value of 0.07 μg/L, and if PFBS concentrations in groundwater exceed the USEPA Tap Water RSL of 400 μg/L;
- Determine if concentrations of PFOS or PFOA in sediment exceed the calculated RSL of 1.26 mg/kg, based on a residential exposure scenario; and,
- Identify potential receptor pathways with immediate impacts to human health (immediate impact to human health is considered consumption of drinking water with PFOS/PFOA above the USEPA HA value, or PFBS above the USEPA Tap Water RSL).

PFAS Analytical Results

PFOS and/or PFOA were detected in soil and sediment samples collected at the Hangar F

at concentrations below the calculated RSL, based on a residential exposure scenario. PFOS and PFOA were detected in soil samples collected during previous SIs at Former FTA #2, with PFOS concentrations exceeding the calculated RSL, based on a residential exposure scenario. PFBS in soil was detected at Former FTA #2, but at concentrations below the USEPA RSL.

PFOS and PFOS+PFOA in groundwater exceeded the USEPA HA values at the Hangar F

, while PFOS and/or PFOA in groundwater also exceeded the USEPA HA values at the four AFFF release areas investigated by others during previous SIs (Former FTA #2; Former Fire Station, Building 1608; SLC-17; and, Regional WWTF Percolation Ponds). PFBS in groundwater was either undetected or detected below the USEPA Tap Water value at all the AFFF release areas. PFAS concentrations in surface water at AFFF Release Area 4 exceeded the USEPA HA values for PFOA and PFOS+PFOA.

Potential human health pathways were identified during this SI. The potential receptors and targets vary by AFFF release area and are summarized below.

Surface and Subsurface Soil Receptors

Potential human exposure receptors from PFAS in surface and subsurface soil include USAF personnel, tenant unit personnel, commercial space operations personnel, contract personnel, grounds maintenance workers, utility workers, construction workers, visitors, and trespassers. PFOS concentrations in subsurface soil at Former FTA #2 exceeded the calculated RSL, based on a residential exposure scenario; however, this soil would only be accessed via excavation or drilling activities in the impacted area.

Groundwater Receptors

Potential human exposure receptors from PFAS in groundwater include USAF personnel, tenant unit personnel, commercial space operations personnel, contract personnel, grounds maintenance workers, utility workers, construction workers, visitors, and trespassers that may expose the shallow water table. Human groundwater receptors via the ingestion pathway are not present for any AFFF release area at or downgradient of CCAFS since the installation utilizes drinking water supplied by the city of Cocoa. Furthermore, the primary groundwater exposure point at CCAFS is the Banana River located along the

western installation boundary, which is not used as a drinking water source for the installation or surrounding area.

Sediment Receptors

Potential human exposure receptors from PFAS in sediment include USAF personnel, tenant unit personnel, commercial space operations personnel, contract personnel, grounds maintenance workers, utility workers, construction workers, visitors, and trespassers that may come into contact with sediment in the drainage canal located downstream of the Hangar F and the deluge basins at SLC-17. However, PFOS and PFOA concentrations were below the calculated RSLs, based on a residential exposure scenario.

Surface Water Receptors

Potential exposure receptors include USAF personnel, on-site workers, visitors, and trespassers that may come into contact with surface water within the Pad B deluge basin. PFOA was detected in surface water samples collected from the Pad B deluge basin at concentrations exceeding the USEPA HA value; however, the deluge basin is only used for the containment of bilge water from missiles launched at Pad B and is not considered a drinking water source.

1.0 INTRODUCTION

This Site Inspection (SI) Report (SIR) was prepared by Amec Foster Wheeler Programs, Inc. (API), together with our affiliate Amec Foster Wheeler Environment & Infrastructure, Inc. (AEI), herein collectively referred to as Amec Foster Wheeler, under Contract No. FA8903-16-D-0027, Task Order 0004, to document the results of SI activities conducted at five aqueous film forming foam (AFFF) release areas located at Cape Canaveral Air Force Station (CCAFS). The purpose of the SI was to determine, through environmental media sampling, if a release of per- and polyfluorinated alkyl substances (PFAS) has occurred at potential AFFF release areas identified by others during a Preliminary Assessment (PA) (HydroGeologic Inc. [HGL], 2015) or installation scoping visit conducted by Amec Foster Wheeler on 15 November 2016.

The data presented in this SIR were collected and evaluated in accordance with the Final Installation-Specific Work Plan (ISWP) (Amec Foster Wheeler, 2017a) and the General Quality Program Plan (QPP) (Amec Foster Wheeler, 2017b).

1.1 PER- AND POLY-FLUORINATED ALKYL SUBSTANCES OVERVIEW

PFAS are a class of synthetic organofluorine compounds that possess a chemical structure that gives them unique properties, including thermal stability and the ability to repel both water and oil. These chemical properties make them useful components in a wide variety of consumer and industrial products, including non-stick cookware, food packaging, waterproof clothing, fabric stain protectors, lubricants, paints, and firefighting foams such as AFFF. AFFF concentrate contains fluorocarbon surfactants to meet required performance standards for fire extinguishing agents (Department of Defense [DoD] Military Specification MIL-F-24385F [SH], Amendment 1, 5 August 1994). The United States Air Force (USAF) began purchasing and using AFFF containing PFAS (perfluorooctanesulfonic acid [PFOS] and/or perfluorooctanoic acid [PFOA]) for extinguishing petroleum fires and during firefighting training activities in 1970, as confirmed by the following federal government documents:

- Military Specification for AFFF (MIL-F-24385), formally issued in 1969 (DoD, 1969);
- General Accounting Office determination on sole source award protest to provide AFFF to the Navy in December 1969; and,
- A History of USAF Fire Protection Training at Chanute Air Force Base, 1964-1976 (Coates, 1977).

AFFF was primarily used on USAF installations at fire training areas (FTAs), but may have also been used, stored or released from hangar fire suppression systems, at firefighting equipment testing and maintenance areas, and during emergency response actions for fuel spills and/or aircraft incidents.

The United States Environmental Protection Agency (USEPA) Office of Water issued lifetime drinking water Health Advisory (HA) values for PFOS and PFOA in May 2016 that replaced the 2009 Preliminary HA values. The HA values for PFOS and PFOA are 0.07 micrograms per liter (μ g/L) for each constituent; however, when these two chemicals co-occur in a drinking water source, a conservative and health-protective approach is recommended that compares the sum of the concentrations (PFOS + PFOA) to the

HA value (0.07 μ g/L). The HA values are non-regulatory concentrations of drinking water contaminants at or below which adverse health effects are not anticipated to occur over specific exposure durations (e.g., 1 day, 10 days, and a lifetime). They serve as informal technical guidance to assist federal, state, and local officials, and managers of public or community water systems in protecting public health when emergency spills or other contamination situations occur. A HA document provides information on the environmental properties, health effects, analytical methodology, and treatment technologies for removing drinking water contaminants. HA values are not to be construed as legally enforceable federal standards and are subject to change as new information becomes available (USEPA, 2016a and 2016b).

The USEPA has not published Regional Screening Levels (RSLs) for PFOS or PFOA for soil or sediment; however; for this project, a residential screening level of 1.26 milligrams per kilogram (mg/kg) for soil and sediment was calculated using the USEPA RSL calculator (<u>https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search</u>). The toxicity value input for the calculator is the Tier 3 value reference dose of 0.00002 mg/kg per day derived by USEPA in their Drinking Water HA values for both PFOS and PFOA (USEPA, 2016a and 2016b).

While PFOS and PFOA are the focus of the HA and provide specific targets for the USAF to address in the SI, USEPA has also derived RSL values for perfluorobutanesulfonic acid (PFBS) for which there is a Tier 2 toxicity value (Provisional Peer Review Toxicity Value) (USEPA, 2017a). PFBS concentrations detected in groundwater and soil were compared to the RSLs of 400 μ g/L and 1,300 mg/kg, respectively.

Table 1.1-1 below presents the screening values for comparing analytical results for PFOS, PFOA, and PFBS. The USEPA and Florida Department of Environmental Protection (FDEP) have not issued HA values or promulgated standards for any other PFAS to date.

Parameter	Chemical Abstract Number	USEPA Regior Level (May 2	Table	Calculated RSL for Soils and Sediments ^b (μg/kg)	USEPA Health Advisory for Drinking Water (Surface Water or Groundwater) (μg/L) ^c	
		Residential Soil (µg/kg)	Tap Water (μg/L)			
PFBS	375-73-5	1.3E+6	400	NL	NL	
PFOA	335-67-1	NL	NL	1,260	0.07 ^d	
PFOS	1763-23-1	NL	NL	1,260		

Table 1.1-1. Regulatory Screening Values.

Notes:

a USEPA Regional Screening Levels (June, 2017a) [https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-june-2017].

b Screening levels, based on residential exposure, calculated using the USEPA Regional Screening Level calculator (<u>https://epa-prgs.ornl.gov/cgi-bin/ chemicals/ csl_search</u>).

c USEPA (May, 2016a) "Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)" and USEPA (May, 2016b) "Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)."

d When both PFOA and PFOS are both present, the combined concentrations of PFOA and PFOS should be compared with the 0.07 µg/L Health Advisory level.

µg/kg - micrograms per kilogram

µg/L - micrograms per liter

NL - not listed

PFBS - perfluorobutanesulfonic acid

PFOA - perfluorooctanoic acid

PFOS - perfluorooctanesulfonic acid

RSL - Regional Screening Level

USEPA – United States Environmental Protection Agency

1.2 PROJECT OBJECTIVES

In accordance with DoD Instruction 4715.18, "Emerging Contaminants (ECs)" (DoD, 2009), the Interim AF Guidance on Sampling and Response Actions for Perfluorinated Compounds at Active and Base Realignment and Closure (BRAC) Installations (USAF, 2012), and the SAF/IE Policy on Perfluorinated Compounds of Concern (USAF, 2016) the USAF will:

- Identify locations where there is a reasonable expectation that there may have been a release of PFAS (defined below) associated with USAF actions;
- 2) Determine if there is unacceptable risk to human health and the environment; and,
- 3) Address releases that pose an unacceptable risk, including offsite migration.

The primary objectives of this SI were to:

 Determine if PFOS, PFOA, or PFBS are present in soil, groundwater, sediment, and/or surface water at the AFFF release area selected for SI or investigated previously by others;

- Determine if PFOS and PFOA concentrations in soil exceed the calculated RSL of 1.26 mg/kg, based on a residential exposure scenario, and if PFBS concentrations in soil exceed the RSL of 1,300 mg/kg, based on a residential exposure scenario,;
- Determine if PFOS, PFOA, or sum of PFOS and PFOA concentrations in groundwater and surface water exceed the USEPA HA value of 0.07 μ g/L, and if PFBS concentrations in groundwater exceed the USEPA Tap Water RSL of 400 μ g/L;
- Determine if PFOS or PFOA concentrations in sediment exceed the calculated RSL of 1.26 mg/kg, based on a residential exposure scenario; and,
- Identify potential receptor pathways with immediate impacts to human health (immediate impact to human health is considered consumption of drinking water with PFOS/PFOA above the USEPA HA value, or PFBS above the USEPA Tap Water RSL).

1.3 PROJECT SCOPE

Four AFFF release areas were recommended for SI at CCAFS based on research conducted during a PA by HGL (2015), as well as one AFFF release area that was added based on supplemental groundwater quality data provided during the installation scoping visit on 15 November 2016. The following AFFF release area was sampled under this SI since it had not been previously investigated for PFAS:

• AFFF Release Area 1: Hangar F

The following four AFFF release areas were not sampled under this SI since PFAS were identified at concentrations above regulatory screening levels during previous investigations:

- AFFF Release Area 2: Former FTA #2 (Solid Waste Management Unit [SWMU] C033, Installation Restoration Program [IRP] Site ID FT017) (Noblis, unpublished; University of California at Los Angeles [UCLA] and Arcadis, 2014).
- AFFF Release Area 3: Former Fire Station, Building 1608 (SWMU C088, IRP Site ID DP055) (UCLA and Arcadis, 2014).
- AFFF Release Area 4: Space Launch Complex (SLC)-17 (SWMU C055, IRP Site ID DP064) (SES Construction and Fuel Services LLC [SCF], 2014).
- AFFF Release Area 5: Regional Wastewater Treatment Facility (WWTF) Percolation Ponds (VZ Technologies, LLC, 2016).

Media evaluated at each area included surface and subsurface (vadose zone) soil, sediment, and groundwater collected from temporary monitoring wells at AFFF Release Area 1. Surface and subsurface (vadose zone) soil, sediment, groundwater, and surface water analytical data were also evaluated from AFFF Release Areas 2 through 5, as provided or reported in site investigations completed by others as referenced above.

This SIR discusses and provides a comparison of the analytical results to screening values for PFOS, PFOA, and PFBS in soil, groundwater, sediment, and surface water. The remaining PFAS do not have screening values. As a result, only the results of PFOS, PFOA, and PFBS from AFFF Release Area 1 are discussed in

detail and presented in figures in the SIR; however, all data are presented in the soil, groundwater, sediment, and surface water analytical tables. Figures and tables from the previous site investigations completed by Noblis (unpublished), SCF (2014), UCLA and Arcadis (2014(, SCF (2014), and VZ Technologies, LLC (2016) are included in **Appendix A** of this SIR that document the detected PFAS results from AFFF Release Areas 2 through 5.

Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas Final Site Inspection Report, Cape Canaveral Air Force Station December 2017 Page 0

This page intentionally left blank.

2.0 AFFF RELEASE AREA BACKGROUND

2.1 SITE LOCATION AND SETTING

CCAFS is located along the east-central Florida coastline, approximately 11 miles north of Patrick Air Force Base (AFB), in Brevard County, Florida, and encompasses approximately 15,800 acres or 25 square miles (**Figure 2.1-1**). The installation is located on a barrier island bordered by the Atlantic Ocean to the east and the Banana River to the west (HGL, 2015).

2.2 SITE HISTORY

CCAFS was established in 1949 by the USAF with the primary mission to provide a site for launching National Aeronautics and Space Administration (NASA), DoD, and commercial satellites into various earth orbits or deep space mission. Construction began on instrumentation and missile handling facilities and the first launch sites for the testing of winged missiles on 9 May 1950. The Long Range Proving Ground Division was redesignated the Air Force Missile Test Center, and the range was renamed the Florida Missile Test Range, on 30 June 1951. The military-occupied portion of Cape Canaveral was designated as the Cape Canaveral Auxiliary Air Force Base (CCAAFB) - Station #1 of the Florida Missile Test Range on 5 October 1951. The CCAAFB was redesignated the Cape Canaveral Missile Test Annex on 16 December 1955, and the overall Florida Missile Test Range was renamed the Atlantic Missile Range in May 1958 (45th Civil Engineer Squadron, Installation Management Flight, Environmental Conservation Element [45 CES/CEIE], 2015). The name of the Cape Canaveral Missile Test Annex was officially changed to Cape Kennedy Air Force Station on 22 January 1964, but was re-named CCAFS in 1973 (http://www.spaceline.org/capehistory/2a.html).

CCAFS is currently operated by the 45th Space Wing, headquartered at Patrick AFB, which conducts and supports space and missile launches and operates the Eastern Test Range. Current active launch complexes include: SLC-37 supporting the United Launch Alliance (ULA) Delta IV launch program, SLC-40 supporting the SpaceX Falcon 9 launch program, and SLC-41 supporting the ULA Atlas V launch program. Other commercial operations are actively building launch facilities at SLC-11 and SLC-36 (Blue Origin) and SLC-17 and SLC-18 (Moon Express). Additionally, SpaceX recently constructed a landing facility (Landing Zone 1) at the former SLC-13 (45 CES/CEIE, 2015).

The primary mission at CCAFS today includes providing the launch site, facilities hardware, and support required to assemble, process, test, and launch various types of space boosters, upper stage, satellites, and payloads. CCAFS also provides the facilities, infrastructure, and ground support for the Eastern Test Range's launch-based instrumentation requirements, including radar, telemetry, optics, command and control, communications, and collection and processing of real-time data. CCAFS provides logistical support to major tenant organizations including the 17th Test Squadron (Detachment 3), Army Explosives Ordnance Disposal, 605th Test and Evaluations Squadron (Detachment 2), Naval Operations Test Unit, U.S. Coast Guard, Military Sealift Command, the National Reconnaissance Office, NASA, and various commercial organizations (http://www.spaceline.org/capehistory/2a.html).

2.3 PREVIOUS INVESTIGATIONS

HGL was contracted by the Air Force Civil Engineer Center (AFCEC) to prepare a PA of FTA and non-FTA sites at CCAFS to identify locations where PFAS may have been used and released into the environment, and to provide an initial assessment of possible migration pathways and receptors of potential contamination (HGL, 2015). Eleven potential AFFF release areas were identified during the PA research. However, the following four potential AFFF release areas recommended for SI (**Figure 2.3-1**):

- 1) Hangar F testing is performed annually since 2013 in the concrete parking area located southeast of Hangar F using an unknown amount of AFFF.
- Former FTA #2 (SWMU C033, IRP Site ID FT017): Fire training exercises were performed in an unlined burn pit and trench potentially using an unknown amount of AFFF from approximately 1970 to 1985.
- Former Fire Station, Building 1608 (SWMU C088, IRP Site ID DP055): An estimated five gallons of AFFF were released annually during refilling operations, as well as during truck washing, from 1970 to 2003.
- 4) SLC-17 (SWMU C055, IRP Site ID DP064): An estimated five gallons of AFFF were released annually during testing from 1985 to 1999, several fires were extinguished with AFFF on and around the launch pads as a result of multiple launches, and a large release of AFFF occurred while extinguishing a fire during a Delta II rocket launch explosion in 1997.

The Regional WWTF Percolation Ponds potential AFFF release area (**Figure 2.3-1**) was omitted from the PA; however, supplemental groundwater quality data provided during the installation scoping visit indicated the presence of PFOS in excess of USEPA the HA value in seven existing monitoring wells (VZ Technologies, LLC, 2016).

The following three AFFF release areas, in addition to the Regional WWTF Percolation Ponds, were not sampled under this SI since PFOS and/or PFOA were detected above the current USEPA HA values or RSLs in soil, groundwater sediment, and/or surface water during previous investigations:

- Former FTA #2: PFOS and PFOA in groundwater exceeded the USEPA HA values in January 2011, March 2012, and November and December 2012 (Noblis, unpublished; UCLA and Arcadis, 2014). Subsurface soil also exceeded the calculated RSL, based on a residential scenario, in November 2012 (UCLA and Arcadis, 2014).
- Former Fire Station, Building 1608: PFOS and PFOA in groundwater exceeded the USEPA HA values in March 2012 (UCLA and Arcadis, 2014).
- SLC-17: PFOA concentrations in groundwater and surface water exceeded the USEPA HA value in April 2014 (SES Fuel Construction Services LLC, 2014).

3.0 FIELD ACTIVITIES AND ANALYTICAL PROTOCOL

SI activities were conducted at CCAFS from 22 to 24 May 2017 at the Hangar F (Figure 2.3-1). Sample locations were determined following discussions between Amec Foster Wheeler, CCAFS, and AFCEC personnel, and were documented in the Final ISWP (Amec Foster Wheeler, 2017a). Media sampled during the SI included surface soil, subsurface soil, sediment, and groundwater collected from temporary monitoring wells.

Photographic documentation of the SI activities is provided in **Appendix B** and field documentation is provided in **Appendix C**. Inspection activities were recorded by field personnel on field activity daily logs (**Appendix C-1**), and daily PFAS protocol checklists were completed to ensure PFAS were not introduced by Amec Foster Wheeler employees or subcontractors (**Appendix C-2**). A tailgate safety meeting was conducted each morning prior to beginning work, with the tailgate safety meeting reports provided in **Appendix C-3**.

Soil Boring Advancement and Soil Sample Collection

Three soil borings were advanced for the collection of soil samples and temporary monitoring well installation by a Florida-licensed driller, Amdrill, Inc. of Brooksville, Florida. Soil borings were initially cleared to a depth of five feet below ground surface (bgs) with a hand auger and completed using direct push technology (DPT) drilling methods. Soil samples were continuously collected from ground surface to approximately ten feet below first-encountered groundwater using a hand auger and decontaminated 5-foot Macro-Core[®] samplers with acetate liners in accordance with Standard Operating Procedure (SOP) AFW-02 (PFAS)–*Soil Sampling* and DEP-SOP-001/01, FS 3000 Soil, field-screened with a photoionization detector equipped with a 10.6 electron volt lamp for volatile organic vapors, and logged by a qualified geoscientist in accordance with the Unified Soil Classification System. The resulting soil boring information, photoionization detector readings, lithologic data, and soil sample locations are included on soil boring/monitoring well records provided in **Appendix C-4**, while the soil sample data (sample ID numbers, date/time collected, and depths) are included on soil sample collection logs in **Appendix C-5**. A cross-section illustrating lithologic data is presented on **Figure 3.0-1**.

Samples for laboratory analysis were extracted from the hand auger bucket or acetate liners with a decontaminated stainless steel spoon and transferred directly into laboratory-provided high-density polyethylene (HDPE) containers. Sample containers were sealed, labeled, packed into ice-filled coolers, and delivered under chain-of-custody (CoC) to SGS Accutest in Orlando, Florida for PFAS analysis or CT Laboratories in Baraboo, Wisconsin for physiochemical properties analysis.

Monitoring Well Installation and Development

Three temporary monitoring wells were installed during the SI through 3.75-inch outside-diameter rods using DPT, as per the FDEP's Monitoring Well Design and Construction Guidance Manual (FDEP, 2008). Monitoring well construction was based on observed depth to water at the time of drilling and geologic conditions encountered. All new monitoring wells were constructed in accordance with the ISWP and

SOP AFW-04 (PFAS)-*Monitoring Well Installation*, to effectively bracket the water table. The temporary monitoring wells were constructed of two-inch-diameter, Schedule 40 polyvinyl chloride (PVC) casing and a threaded 10-foot section of 0.010-inch slotted two-inch-diameter Schedule 40 PVC pre-pack well screen wrapped with a stainless steel wire mesh containing a 0.25-inch-thick filter pack and end cap. Well construction details for the three temporary monitoring wells are provided on well construction forms in **Appendix C-6**, while **Table 3.0-1** provides a summary of the well construction details for the temporary monitoring wells.

The monitoring wells were developed with a peristaltic pump outfitted with disposable HDPE tubing, in accordance with SOP AFW-05 (PFAS)–*Well Development* and the FDEP's Monitoring Well Design and Construction Guidance Manual (FDEP, 2008). Water quality parameters (pH, specific conductance, temperature, oxidation-reduction potential [ORP], dissolved oxygen [DO], and turbidity) of the development water were measured with water quality meters and recorded on Well Development Logs (**Appendix C-7**). A minimum of three saturated casing volumes of water were purged from each new well during development, and continued until the field water quality parameters stabilized. The aforementioned instrumentation was field calibrated as per DEP-SOP-001/01, FT 1000 General Field Testing and Measurement, and the results included on water quality sampling instrument calibration forms (**Appendix C-8**).

Groundwater Elevations

Depth to water measurements were recorded from each temporary monitoring well prior to groundwater purging and sampling, and groundwater elevations were calculated relative to the newly installed monitoring well top-of-casing elevations surveyed by a professionally licensed Florida surveyor from the Amec Foster Wheeler Orlando, Florida office. Depth to groundwater on 24 May 2017 ranged from 5.42 to 6.34 below top of casing, while groundwater elevations ranged from 0.63 to 0.69 feet above mean sea level (**Table 3.0-2**). Groundwater flow beneath the Hangar F was generally to the west-southwest towards the Banana River at an average hydraulic gradient of 0.004 feet/feet (**Figure 3.0-2**).

Groundwater Sampling

The groundwater sampling program included the collection of groundwater samples for laboratory chemical analysis of PFAS from the three temporary monitoring wells. Samples were collected using low-flow groundwater sampling methods with a peristaltic pump. The HDPE tubing was connected to a flow-through cell whereby recovered groundwater was monitored for pH, temperature, specific conductivity, DO, and ORP. Turbidity was measured with a separate turbidity meter. Groundwater sampling equipment was calibrated prior to use, with the resulting data recorded on water quality sampling instrument calibration forms contained in **Appendix C-8**. Depth to water measurements and field parameters were monitored until groundwater indicator parameters reached stabilization criteria in accordance with SOP AFW-03 (PFAS)-*Groundwater Sampling* and DEP-SOP-001/01, FS 2200 Groundwater Sampling. The flow-

through cell was then removed and groundwater samples were collected directly into laboratory-provided HDPE containers from the discharge tubing. The sample containers were sealed, labeled, packed on ice in an insulated cooler, and delivered to SGS Accutest under CoC protocol. Groundwater sampling activities were documented on Groundwater Sampling Logs provided in **Appendix C-9**.

Soil Boring Abandonment

The casings and screens from the three temporary monitoring wells were removed subsequent to groundwater sampling, steam cleaned, and disposed of in a dumpster at the installation. The three temporary monitoring well boreholes were abandoned with neat Portland cement via the tremie pipe method on 24 May 2017, as per SOP AFW-06 (PFAS)-*Borehole Abandonment*, the St. John's River Water Management District, Chapter 40C-3, Florida Administrative Code, and the FDEP's Monitoring Well Design and Construction Guidance Manual (FDEP, 2008).

Sediment Sampling

One sediment sample was collected to assess the presence or absence of PFAS within the drainage canal located downslope (south) of the parking area used for testing. The sample was collected with a stainless steel scoop directly into laboratory-provided containers in accordance with SOP AFW-07 (PFAS)–*Sediment Sampling* and DEP-SOP-001/01, FS 2200. The sample container was sealed, labeled, packed on ice in an insulated cooler, and delivered to SGS Accutest under CoC protocol. Sample collection data was documented on a sediment sample collection log provided in **Appendix C-10**.

Total Sample Counts

The following total sample counts for each media (including field duplicate samples) during SI activities at CCAFS are listed below:

- Seven soil samples (including one field duplicate) were collected from three soil boring locations during the SI;
- Four groundwater samples (including one field duplicate) were collected from three temporary monitoring wells during the SI; and,
- Two sediment samples (including one field duplicate) were collected from the drainage canal during the SI.

Samples collected during the SI were analyzed for the following 16 PFAS compounds:

- PFOS;
- PFOA;
- PFBS;
- Perfluoroheptanoic acid (PFHpA);
- Perfluorohexanesulfonic acid (PFHxS);
- Perfluorononanoic acid (PFNA);

- N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA);
- N-Methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA);
- Perfluorodecanoic acid (PFDA);
- Perfluorotetradecanoic acid (PFTA);
- Perfluorododecanoic acid (PFDoA);
- Perfluorohexanoic acid (PFHxA);
- Perfluorotridecanoic acid (PFTrDA);
- Perfluoroundecanoic acid (PFUnA);
- 6:2 fluorotelomer sulfonate (FTS); and,
- 8:2 FTS.

Soil, groundwater, and sediment samples were analyzed by SGS Accutest in Orlando, Florida, a DoD Environmental Laboratory Accreditation Program accredited laboratory. Samples were analyzed by Modified USEPA Method 537 using Liquid Chromatography and Tandem Mass Spectrometry (LC-MS-MS). The LC-MS-MS method provides acceptable detection limits to confirm the presence of PFAS listed above. The laboratory analytical reports for the PFAS samples collected during the SI are included in **Appendix D**.

Analytical results for PFOS, PFOA, and PFBS are discussed in the following sections, while the analytical results for the remaining PFAS constituents are provided in tables at the conclusion of this SIR.

Co-occurrence of PFOS and PFOA (PFOS + PFOA) in aqueous samples was reported using the following guidelines:

- If PFOS and PFOA are both detected in concentrations at or above the laboratory detection limit (DL) in groundwater, then the reported concentration for PFOA was added to the reported concentration for PFOS.
- 2. If only PFOS or only PFOA is detected at or above the DL in groundwater, then the concentration of the detected analyte only is reported.
- 3. If neither PFOA nor PFOS are detected at concentrations at or above the DL, then co-occurrence was reported as *Not Detected*.

One composite surface soil sample and one composite subsurface soil sample were also collected at the AFFF release area on 22 May 2017 and submitted to CT Laboratories in Baraboo, Wisconsin for laboratory analysis of physiochemical properties, including soil pH (USEPA Method 9045B), particle size analysis (American Society for Testing and Materials International D422), and total organic carbon (TOC) content (Lloyd Kahn 9060A Method). The particle size analysis was subcontracted to Mi-Tech Services, Inc. in Weston, Wisconsin. The laboratory analytical reports for the physiochemical properties samples collected during the SI are included in **Appendix D**.

Data Validation and Usability Assessment

Analytical laboratory data from soil and groundwater samples analyzed for PFAS were validated in July 2017. Amec Foster Wheeler evaluated a total of 208 data records from field samples during the validation process and J or UJ qualified 72 records (35%) as estimated values because of field duplicate imprecision, low laboratory control sample recoveries, low matrix spike (MS) recoveries, high or low surrogate recoveries, and/or analyte concentrations between the detection limit (DL) and the Limit of Quantification (LOQ). During validation, Amec Foster Wheeler J qualified three PFOS results as being estimated concentrations because of low MS recoveries, indicating potentially low analytical bias. One of these results was a water sample with a PFOS concentration that exceeded the screening criteria of 0.07 μ g/L. The potential low analytical bias in this result is not interpreted to adversely affect overall data usability. The other two PFOS results qualified because of low MS recoveries were soil samples with PFOS detections more than an order of magnitude lower than the screening criteria of 1.26 mg/kg and the low analytical bias is not interpreted to adversely affect overall data usability. Amec Foster Wheeler also J gualified three PFOA and five PFOS results as being estimated values because the detected concentrations were between the DL and the LOQ, and/or because of field duplicate imprecision. These results were orders of magnitude lower than the applicable screening criteria of 1.26 mg/kg and the uncertainty in the analytical results is not interpreted to adversely affect overall data usability.

For the areas sampled in this SI, the decision to advance each of the areas for further investigation was based on non-qualified data. A description of the data validation scope, procedures, observations and actions is presented in the Data Validation Report provided in **Appendix E**.

Surveying

The three temporary monitoring wells were surveyed by a Florida Licensed Professional Surveyor from the Amec Foster Wheeler, Orlando, Florida office for horizontal coordinates, and ground surface and top-of-casing elevations (**Table 3.0-1**). Horizontal coordinates were surveyed based on Florida State Plane Coordinate System, East Zone, United States Survey Feet, North American Datum of 1983. Groundwater surface and top-of-casing elevations were collected based on North American Vertical Datum of 1988.

Investigation-Derived Waste

Investigation-Derived Waste (IDW) consisted of soil cuttings from soil boring advancement, well development water, groundwater sampling purge water, equipment decontamination water, disposable personal protective equipment (PPE), and other miscellaneous refuse. Used PPE and other miscellaneous refuse was placed in plastic bags and discarded into an on-site sanitary trash container for disposal at a sanitary landfill. Soil and liquid IDW was containerized in Department of Transportation-approved 55-gallon steel drums. Composite grab samples were collected on 22 May 2017 from the one drum of soil IDW and three drums of liquid IDW generated during the SI. The samples were laboratory analyzed by SGS Accutest in Orlando, Florida for laboratory analysis of PFAS, volatile organic compounds, semi-volatile organic compounds, pesticides, herbicides, and metals, polychlorinated biphenyls, total petroleum

hydrocarbons (gasoline range organics and diesel range organics), flashpoint, pH, sulfide, and cyanide, to determine the applicable disposal options (**Appendix D**). The four drums of IDW were transported from the installation by Evergreen Waste LLC on 20 October 2017 for incineration at the Covanta Environmental Solutions facility in Augusta, Georgia. The non-hazardous waste manifest for the one drum of solid IDW and three drums of liquid IDW are found in **Appendix F**.

A detailed description of sampling locations and results at the Hangar F resul

3.1 AFFF RELEASE AREA 1: HANGAR F

This AFFF release area, located in the concrete parking area southeast of Hangar F, has been used annually since 2013 for fire equipment testing. An unknown amount of AFFF is typically released to the parking area and either evaporates or drains to the surrounding ground surface via surface water runoff (HGL, 2015).

3.1.1 Sample Location and Methodologies

3.1.1.1 Soil Samples

Soil borings MW01001, MW01002, and MW01003 were advanced at the Hangar F

during the SI on 22 May 2017 (**Figure 3.1-1**). Surface soil samples were collected at 0 to 0.5 feet bgs, and subsurface soil samples were collected at depths ranging from 3 to 4 feet bgs, for PFAS analysis. Composite soil samples were also collected from each soil boring from 0 to 1 foot bgs and 3 to 4 feet bgs for TOC, pH, and particle size analysis. Groundwater was encountered at approximately 6 to 7 feet bgs during boring advancement.

3.1.1.2 Groundwater Samples

Temporary monitoring wells were installed in soil borings MW01001, MW01002, and MW01003 during the SI on 22 May 2017 to assess PFAS concentrations at the Hangar F **3.1-1**). Temporary monitoring wells MW01001 through MW01003 were screened from 4.8 and 14.8 feet bgs (**Table 3.0-1**). The temporary monitoring wells were developed on 22 May 2017 and sampled on 24 May 2017.

3.1.2 Analytical Results

3.1.2.1 Soil Results

Four surface soil samples and three subsurface soil samples (six normal and one field duplicate) were collected from borings MW01001, MW01002, and MW01003. PFAS results are provided in **Table 3.1-1**, illustrated on **Figure 3.1-2**, and summarized below.

MW01001:

- PFOS was detected below the RSL at the two sampling intervals at a maximum concentration of 0.00832 mg/kg (0 to 0.5 feet bgs).
- PFOA was not detected at either interval.
- PFBS was not detected at either interval.

MW01002:

- PFOS was positively identified below the RSL at an approximate concentration of 0.00127 mg/kg in the surface soil interval (0 to 0.5 feet bgs), but was not detected in the subsurface soil interval (3 to 4 feet).
- PFOA was not detected at either interval.
- PFBS was not detected at either interval.

MW01003:

- PFOS was positively identified below the RSL at the two sampling intervals at a maximum approximate concentration of 0.00327 mg/kg (0 to 0.5 feet bgs).
- PFOA was positively identified below the RSL at an approximate concentration of 0.000727 mg/kg in the surface soil interval (0 to 0.5 feet bgs), but was not detected in the subsurface soil interval (3 to 4 feet).
- PFBS was not detected at either interval.

The composite TOC concentrations ranged from 1590 mg/kg (3 to 4 feet bgs) to 5850 mg/kg (0 to 1 foot bgs), while the composite pH concentrations ranged from 8.31 Standard Unit (S.U.) (0 to 1 foot bgs) to 8.48 S.U. (3 to 4 feet bgs) (**Table 3.1-2**). The particle size analytical results for the 0 to 1 foot bgs sample was 5.1% fines (silt and clay), 83.0% sand (fine to coarse), and 11.9% gravel (fine), while the 3 to 4 feet bgs sample was 3.2% fines (silt and clay), 93.5% sand (fine to coarse), and 3.3% gravel (fine). The material description for the 0 to 1 foot bgs sample was a pale brown, fine to medium sand with trace fines and organics, while the 3 to 4 feet bgs sample was described as a very pale brown to yellowish brown, fine to medium sand with trace fines.

3.1.2.2 Groundwater Results

Four groundwater samples (three normal and one field duplicate) were collected from temporary monitoring wells MW01001, MW01002, and MW01003. PFAS results are provided in **Table 3.1-3**, illustrated in **Figure 3.1-3**, and summarized below.

MW01001:

• PFOS was detected below the USEPA HA value at a maximum concentration of 0.0421 μ g/L in the field duplicate sample.

- PFOA was detected below the USEPA HA value at a concentration of 0.0281 μ g/L in the field duplicate sample.
- PFOS+PFOA was detected above the USEPA HA value at a concentration of 0.0702 μg/L in the field duplicate sample.
- PFBS was detected below the USEPA Tap Water RSL at a concentration of 0.0211 μ g/L in the field duplicate sample.

MW01002:

- PFOS was positively identified above the USEPA HA value at an approximate concentration of 0.0942 μg/L.
- PFOA was detected below the USEPA HA value at a concentration of 0.0377 μg/L.
- PFOS+PFOA was detected above the USEPA HA value at a concentration of 0.1319 μg/L.
- PFBS was not detected.

MW01003:

- PFOS was detected below the USEPA HA value at a concentration of 0.0659 μg/L.
- PFOA was detected below USEPA HA value at a concentration of 0.0339 μg/L.
- PFOS+PFOA was detected above USEPA HA value at a concentration of 0.0998 μg/L.
- PFBS was not detected.

3.1.2.3 Sediment Results

Two sediment samples (one normal and one field duplicate) were collected from the drainage canal located downstream (south) of the concrete parking area where AFFF was released for refractometer testing. PFAS results are provided in **Table 3.1-4**, illustrated in **Figure 3.1-4**, and summarized below.

SD01001:

- PFOS was positively identified below the RSL at an approximate concentration of 0.0303 mg/kg.
- PFOA was positively identified below the RSL at an approximate concentration of 0.00227 mg/kg.
- PFBS was not detected.

3.1.3 Conclusions

PFOS and PFOA were detected in soil and sediment at and downstream of the Hangar F

at concentrations below the RSLs, while PFBS was not detected in any of the soil or sediment samples. The PFOS groundwater concentration in MW01002 and the PFOS+PFOA groundwater concentrations in MW01001 through MW01003 exceeded the USEPA HA value for groundwater. PFBS was detected below the USEPA Tap Water RSL in MW01001, and was undetected in MW01002 and MW01003.

4.0 MIGRATION/EXPOSURE PATHWAYS AND TARGETS

An updated base-wide conceptual site model table is provided as **Table 4.0-1**. The table provides an overview of the facility, physical, release, land use, exposure, and ecological profiles at CCAFS. The table has been updated to include information collected during this SI, as well as the historical information collected from previous SIs. A more detailed description of source area conditions and exposure pathways is described in the following sections.

4.1 SOIL (SURFACE AND SUBSURFACE) EXPOSURE PATHWAY

4.1.1 Local Geologic Setting

The principle soil types at CCAFS include three prominent soils comprising the moderately well-drained Canaveral-Palm Beach-Welaka association that generally consist of a mixture of light-colored quartz sand grains and multicolored shell fragments (Shaw, 2006). Surficial sediments consist of 110 feet of undifferentiated Pleistocene and Holocene beach deposits underlain by coquina and sandy clay of the Anastasia Formation, the Caloosahatchee Marl Formation, and limestone of the Tamiami Formation (Shaw, 2006). The underlying Miocene Age Hawthorn Group is composed predominantly of clays, silts, and marls (Shaw, 2006). A geologic cross-section developed from the SI well installation activities are provided in **Figure 3.0-1**, indicating the uppermost deposits consist of fine to medium sands with trace fines alternating with silty fine to medium sands.

4.1.2 Soil Exposure Pathways and Targets

PFOS and PFOA were detected in soil samples collected at the one AFFF release area included in this SI (Hangar F), but at concentrations below the respective RSLs. PFOS and PFOA were detected in soil samples collected by others during a previous SI at Former FTA #2, with PFOS concentrations exceeding the RSL. PFBS in soil was detected only at Former FTA #2, but at concentrations below the RSL.

Surface soil at CCAFS is potentially accessible by USAF personnel, tenant unit personnel, commercial space operations personnel, contract personnel, grounds maintenance workers, utility workers, construction workers, visitors, and trespassers. Subsurface soil is primarily accessible by utility or construction workers involved with excavating, drilling, or any activity that exposes them to subsurface soil. Access to source area soil is not expected to change in the future.

Potential exposure routes for soil include inhalation of impacted surface soil dust particles, and ingestion of and dermal contact with impacted soil.

4.1.3 Soil Exposure Conclusions

Potential human exposure receptors from PFAS in surface and subsurface soil include USAF personnel, tenant unit personnel, commercial space operations personnel, contract personnel, grounds maintenance workers, utility workers, construction workers, visitors, and trespassers. PFOS concentrations in

subsurface soil at Former FTA #2 exceeded the calculated RSL, based on a residential exposure scenario; however, this soil would only be accessed via excavation or drilling activities in the impacted area.

4.2 GROUNDWATER MIGRATION PATHWAY

4.2.1 Local Hydrogeologic Setting

The surficial aquifer system near CCAFS is contained in undifferentiated Late Miocene, Pliocene, and Recent Pleistocene deposits composed primarily of medium to coarse quartz sands and coquina under unconfined conditions (Shaw, 2006). Groundwater is typically encountered at an average depth of 5 feet below land surface and generally flows to the west (Shaw, 2006).

The Floridan Aquifer is comprised of a series of highly permeable limestone formations of the Eocene Age Ocala Group and Avon Park Limestone that is separated from the surficial aquifer by the Hawthorn Group, which acts as an aquitard (Shaw, 2006).

4.2.2 Groundwater Exposure Pathways and Targets

PFAS, once in groundwater, are highly mobile and will migrate near the same velocity as groundwater due to their high solubility and low partition coefficient value. PFAS are chemically and biologically stable in the environment and resist typical environmental degradation processes. As a result, these chemicals are extremely persistent in the environment, with a half-life greater than 41 years for PFOS and greater than 92 years for PFOA (USEPA, 2014b). PFBS is generally less toxic and less bioaccumulative in wildlife and humans (USEPA, 2017b).

PFOS and PFOS+PFOA in groundwater exceeded the USEPA HA values at the Hangar F

while PFOS and/or PFOA in groundwater also exceeded the USEPA HA values at the four AFFF release areas investigated by others during previous SIs (Former FTA #2; Former Fire Station, Building 1608; SLC-17; and, Regional WWTF Percolation Ponds). PFBS in groundwater was detected below the USEPA Tap Water value at the Hangar F and and Former FTA #2. Based on the current and historical PFAS analytical results, the Hangar F and Former FTA #2, Former FTA #2, Former Fire Station/Building 1608, SLC-17, and Regional WWTF Percolation Ponds are considered as groundwater release areas for pathway analysis.

Groundwater flow from the Hangar F **Section** is to the west-southwest towards the Banana River based on the current SI (**Figure 3.0-2**), and is anticipated to be in a similar direction for the Former FTA #2, Former Fire Station/Building 1608, SLC-17, and Regional WWTF Percolation Ponds AFFF release areas. No primary human groundwater receptors were identified at or downgradient of CCAFS from PFAS-impacted AFFF release areas since the drinking water supply to CCAFS is provided by the city of Cocoa (HGL, 2015), and the primary groundwater exposure point at CCAFS is the Banana River located along the western installation boundary.

4.2.3 Groundwater Migration Pathway Conclusions

PFOS, PFOA and/or PFOS+PFOA in groundwater exceeded the USEPA HA values at the Hangar F , Former FTA #2, Former Fire Station/Building 1608, SLC-17, and Regional WWTF Percolation Ponds. Groundwater flow from these AFFF release areas is generally to the west towards the Banana River. Human groundwater receptors via the ingestion pathway are not present for any AFFF release area at or downgradient of CCAFS since the installation utilizes drinking water supplied by the city of Cocoa (HGL, 2015), and the primary groundwater exposure point at CCAFS is the Banana River located along the western installation boundary.

4.3 SEDIMENT EXPOSURE PATHWAY

4.3.1 Sediment Exposure Pathways and Targets

PFOS was detected in sediments collected from the Hangar F at concentrations below the RSL. Sediment at CCAFS is potentially accessible by USAF personnel, tenant unit personnel, commercial space operations personnel, contract personnel, grounds maintenance workers, utility workers, construction workers, visitors, and trespassers. Potential exposure routes for sediment include dermal contact with submerged or exposed sediment during work activities such as maintenance of drainage ditches and canals that contain PFAS-impacted sediment.

4.3.2 Sediment Exposure Conclusions

PFOS was detected in sediments collected from the Hangar F at concentrations below the RSL. Potential exposure receptors include USAF personnel, tenant unit personnel, commercial space operations personnel, contract personnel, grounds maintenance workers, utility workers, construction workers, visitors, and trespassers that may come into contact with sediment downstream of this AFFF release area.

4.4 SURFACE WATER EXPOSURE PATHWAY

4.4.1 Surface Water Exposure Pathways and Targets

PFOA was detected in surface water samples collected from the Pad B deluge basin at SLC-17 at concentrations exceeding the USEPA HA value of $0.07 \mu g/L$ during the previous site investigation by SCF (2014). However, the deluge basin is only used for the containment of bilge water from missiles launched at Pad B and is not considered a drinking water source. Potential exposure receptors include USAF personnel, on-site workers, visitors, and trespassers that may come into contact with surface water within the Pad B deluge basin at SLC-17.

4.4.2 Surface Water Exposure Conclusions

PFOA was detected in surface water at concentrations above the USEPA HA value from AFFF Release Area 9 during the previous site investigation by SCF (2014). However, the USEPA HA value for PFOS and PFOA is only applicable to drinking water sources, and the Banana River is not currently used as a drinking water

source for Patrick AFB or the surrounding community. Potential exposure receptors include USAF personnel, on-site workers, visitors, and trespassers that may come into contact with surface water within the drainage channel and at Outfall 21 to the Banana River.

5.0 SUMMARY AND CONCLUSIONS

As stated in the introduction, the objectives of this study were to:

- Determine if PFOS, PFOA, or PFBS are present in soil, groundwater, sediment and/or surface water at AFFF release areas selected for SI or investigated previously by others;
- Determine if PFOS and PFOA concentrations in soil exceed the calculated RSL of 1.26 mg/kg, based on a residential exposure scenario, and if PFBS concentrations in soil exceed the RSL of 1,300 mg/kg, based on a residential exposure scenario;
- Determine if PFOS, PFOA, or sum of PFOS and PFOA concentrations in groundwater and surface water exceed the USEPA HA value of 0.07 μ g/L, and if PFBS concentrations in groundwater exceed the USEPA Tap Water RSL of 400 μ g/L;
- Determine if concentrations of PFOS or PFOA in sediment exceed the calculated RSL of 1.26 mg/kg, based on a residential exposure scenario; and,
- Identify potential receptor pathways with immediate impacts to human health (immediate impact to human health is considered consumption of drinking water with PFOS/PFOA above the USEPA HA value, or PFBS above the USEPA Tap Water RSL).

Section 3 of this SI detailed the analytical results for PFAS at the Hangar F . In addition, Section 2.3 included a description of the historical analytical results from previous SIs conducted by others. A summary table (**Table 5.0-1**) is also provided below which lists specific exceedances by AFFF release area and media, fulfilling the objectives of the SI.

AFFF Release Area	Parameter	Maximum Detected Concentration	Screening Value	Units	Number of Samples*/ Number of Exceedances	Exceeds Screening Level		
	Surface Soil (0 to 0.5 feet)							
	PFOS	0.00832	1.26	mg/kg	3/0	No		
	PFOA	0.000727 J	1.26	mg/kg	3/0	No		
	PFBS	ND	1,300	mg/kg	3/0	No		
	Subsurface Soil (3 to 4 feet)							
	PFOS	0.0017 J	1.26	mg/kg	3/0	No		
	PFOA	ND	1.26	mg/kg	3/0	No		
	PFBS	ND	1,300	mg/kg	3/0	No		
	Groundwater	Groundwater						
AFFF Release Area 1	PFOS	0.0942 J	0.07	µg/L	3/1	Yes		
Hangar F	PFOA	0.0377	0.07	μg/L	3/0	No		
	PFOS+PFOA	0.1319 J	0.07	μg/L	3/3	Yes		
	PFBS	0.0211	400	µg/L	3/0	No		
	Sediment							
	PFOS	0.0303 J	1.26	mg/kg	1/0	No		
	PFOA	0.00227 J	1.26	mg/kg	1/0	No		
	Surface Soil (0 to 1 feet)							
	PFOS	0.078	1.26	mg/kg	8/0	No		
	PFOA	0.022	1.26	mg/kg	8/0	No		
	PFBS	0.00036 J M	1,300	mg/kg	8/0	No		
	Subsurface So	Subsurface Soil (3 to 7 feet)						
	PFOS	9.3 M	1.26	mg/kg	10/1	Yes		
	PFOA	0.022	1.26	mg/kg	10/0	No		
AFFF Release Area 2	PFBS	0.00036 J M	1,300	mg/kg	10/0	No		
FTA #2	Groundwater							
	PFOS	330 J	0.07	μg/L	34/28	Yes		
	PFOA	7.1	0.07	µg/L	34/20	Yes		
	PFOS+PFOA	337.1 J	0.07	µg/L	34/28	Yes		
	PFBS	4.2	400	μg/L	34/0	No		
	Sediment							
	PFOS	0.0047	1.26	mg/kg	9/0	No		
	PFOA	0.00036 J	1.26	mg/kg	9/0	No		
	Groundwater							
AFFF Release Area 3	PFOS	110	0.07	μg/L	3/3	Yes		
Former Fire Station,	PFOA	12	0.07	µg/L	3/3	Yes		
Building 1608	PFOS+PFOA	122	0.07	μg/L	3/3	Yes		
	PFBS	0.53	400	µg/L	3/0	No		

Table 5.0-1. Summary of PFAS Screening Level Exceedances.

AFFF Release Area	Parameter	Maximum Detected Concentration	Screening Value	Units	Number of Samples*/ Number of Exceedances	Exceeds Screening Level		
	Subsurface Soil (4 to 5 feet)							
	PFOS	ND	1.26	mg/kg	4/0	No		
	PFOA	0.00049	1.26	mg/kg	4/0	No		
	PFBS	ND	1,300	mg/kg	4/0	No		
	Groundwater	Groundwater						
	PFOS	0.12	0.07	µg/L	3/1	Yes		
	PFOA	0.24	0.07	µg/L	3/2	Yes		
	PFOS+PFOA	0.36	0.07	µg/L	3/2	Yes		
AFFF Release Area 4	PFBS	ND	400	µg/L	4/0	No		
SLC-17	Sediment							
	PFOS	0.0009 J	1.26	mg/kg	2/0	No		
	PFOA	0.02 J	1.26	mg/kg	2/0	No		
	Surface Water							
	PFOS	0.020 J	0.07	µg/L	1/0	No		
	PFOA	0.74 J	0.07	µg/L	1/1	Yes		
	PFOS+PFOA	0.760 J	0.07	µg/L	1/1	Yes		
	PFBS	ND	400	µg/L	1/0	No		
	Groundwater							
AFFF Release Area 5	PFOS	0.612	0.07	µg/L	10/7	Yes		
Regional WWTF	PFOA	0.0409	0.07	µg/L	10/0	No		
Percolation Ponds	PFOS+PFOA	0.6284	0.07	µg/L	10/7	Yes		
	PFBS	0.0288	400	µg/L	10/0	No		

Notes:

* normal samples (count does not include QC samples)

AFFF – aqueous film forming foam

I - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL)

J – The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample

M – Manual integrated compound

µg/L – micrograms per liter

mg/kg – milligrams per kilogram

ND – not detected

Potential human health pathways were identified and detailed in Section 4.0 of this SIR. Media-specific pathways and receptors are discussed below.

Surface and Subsurface Soil Receptors

Potential human exposure receptors from PFAS in surface and subsurface soil include USAF personnel, tenant unit personnel, commercial space operations personnel, contract personnel, grounds maintenance workers, utility workers, construction workers, visitors, and trespassers. PFOS concentrations in

subsurface soil at Former FTA #2 exceeded the calculated RSL, based on a residential exposure scenario; however, this soil would only be accessed via excavation or drilling activities in the impacted area.

Groundwater Receptors

Potential human exposure receptors from PFAS in groundwater include USAF personnel, tenant unit personnel, commercial space operations personnel, contract personnel, grounds maintenance workers, utility workers, construction workers, visitors, and trespassers that may expose the shallow water table. Human groundwater receptors via the ingestion pathway are not present for any AFFF release area at CCAFS since the installation utilizes drinking water supplied by the city of Cocoa. Furthermore, the primary groundwater exposure point at CCAFS is the Banana River located along the western installation boundary, which is not used as a drinking water source for the installation or surrounding area.

Sediment Receptors

Potential human exposure receptors from PFAS in sediment include USAF personnel, tenant unit personnel, commercial space operations personnel, contract personnel, grounds maintenance workers, utility workers, construction workers, visitors, and trespassers who may come into contact with sediment in the drainage canal located downstream of the Hangar F and the deluge basins at SLC-17. However, PFOS and PFOA concentrations were below the calculated RSLs, based on a residential exposure scenario.

Surface Water Receptors

Potential exposure receptors include USAF personnel, on-site workers, visitors, and trespassers that may come into contact with surface water within the Pad B deluge basin. PFOS and PFOA were detected in surface water samples collected from the Pad B deluge basin at concentrations exceeding the USEPA HA value; however, the deluge basin is only used for the containment of bilge water from missiles launched at Pad B and is not considered a drinking water source.

6.0 REFERENCES

- Amec Foster Wheeler Environment & Infrastructure, Inc. (AEI), 2017a. Final Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas, Environmental Programs Worldwide, Installation-Specific Work Plan, Cape Canaveral Air Force Station, Florida, March.
- AEI, 2017b. Final Site Inspection of Film Forming Foam (AFFF) Release Areas Quality Program Plan, March.
- Coates, 1977. A History of USAF Fire Protection Training at Chanute Air Force Base, 1964 1976.
- Department of Defense (DoD), 1969. MIL-F-24385, Military Specification: Fire Extinguishing Agent, Aqueous Film Forming (AFFF) Liquid Concentrate, Six Percent, for Fresh and Sea Water, November.
- DoD, 1994. MIL-F-24385F (SH) Amendment 1, Fire Extinguishing Agent, Aqueous Film Forming Foam (AFFF) Liquid Concentrate, for Fresh and Seawater, August.
- DoD, 2009. Department of Defense, Instruction Number 4715.18 Emerging Contaminants (ECs), 11June.
- Florida Department of Environmental Protection (FDEP), 2008. *Monitoring Well Design and Construction Guidance Manual, Florida Department of Environmental Protection Bureau of Water Facilities Regulation*. 2008.
- HydroGeologic, Inc. (HGL), 2015. Final Preliminary Assessment Report for Perfluorinated Compounds at Cape Canaveral Air Force Station, Florida, October.
- Noblis, unpublished. Spreadsheet Summary of All PFC Data Collected from Air Force Bases prior to December 2011.
- SES Construction and Fuel Services LLC (SCF), 2014. *Final Site Investigation Report for Site Investigations* of Fire Fighting Foam Usage at Various Air Force Bases in the United States for Cape Canaveral Air Force Station, Brevard County, Florida. November.
- Shaw Environmental, Inc., 2006. *Cape Canaveral Air Force Stations Comprehensive Site Evaluation, Draft Final Phase I Report*, 19 July.
- University of California at Los Angeles and Arcadis (UCLA and Arcadis), 2014. Field Investigation to Characterize Perfluorinated Compounds (PFCs) at Air Force Sites, Findings from Cape Canaveral Air Force Station and Barksdale Air Force Base. March.
- United States Air Force (USAF), 2012. Interim USAF Guidance on Sampling and Response Actions for Perfluorinated Compounds at Active and Base Realignment and Closure Installations, August.
- USAF, 2014. *Air Force Instruction 32-7020, The Environmental Restoration Program*, November.
- USAF, 2016. SAF/IE Policy on Perfluorinated Compounds (PFCs) of Concern, August.
- United States Environmental Protection Agency (USEPA), 2014a. EPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, EPA/540-R-014-002.
- USEPA, 2014b. USEPA Fact Sheet. Emerging Contaminants Fact Sheet PFOS and PFOA, March.
- USEPA, 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS), 19 May.
- USEPA, 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA), 19 May.
- USEPA, 2017a. Regional Screening Levels (RSLs) Generic Tables, Composite Table, June.

- USEPA, 2017b. Assessing and Managing Chemicals under TSCA, Per- and Polyfluoroalkyl Substances (PFASs) under TSCA. Updated 13 March. <u>https://www.epa.gov/assessing-and-managing-</u> chemicals-under-tsca/and-polyfluoroalkyl-substances-pfass-under-tsca.
- VZ Technologies, LLC, 2016. *Cape Canaveral Air Force Station (CCAFS) Regional Wastewater Treatment Facility (WWTF) Percolation Pond Groundwater Monitoring for PFOS and PFOA (Letter Report).* 14 November.

FIGURES

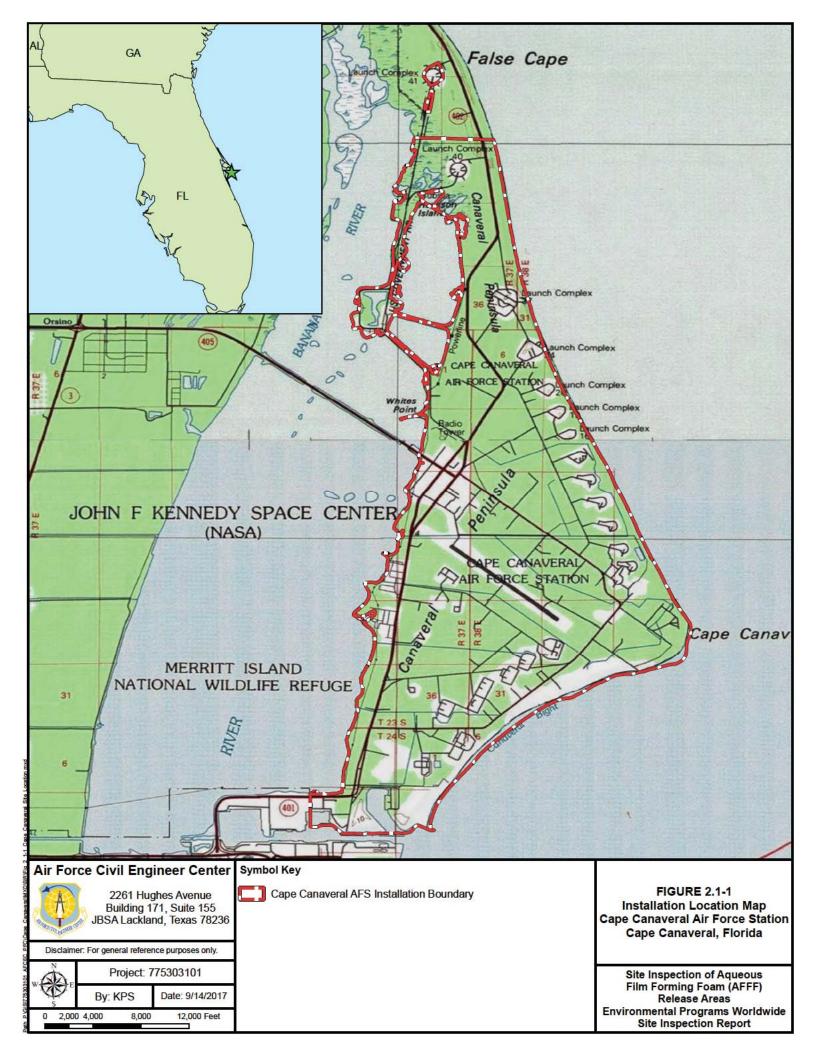
FIGURE ACRONYMS

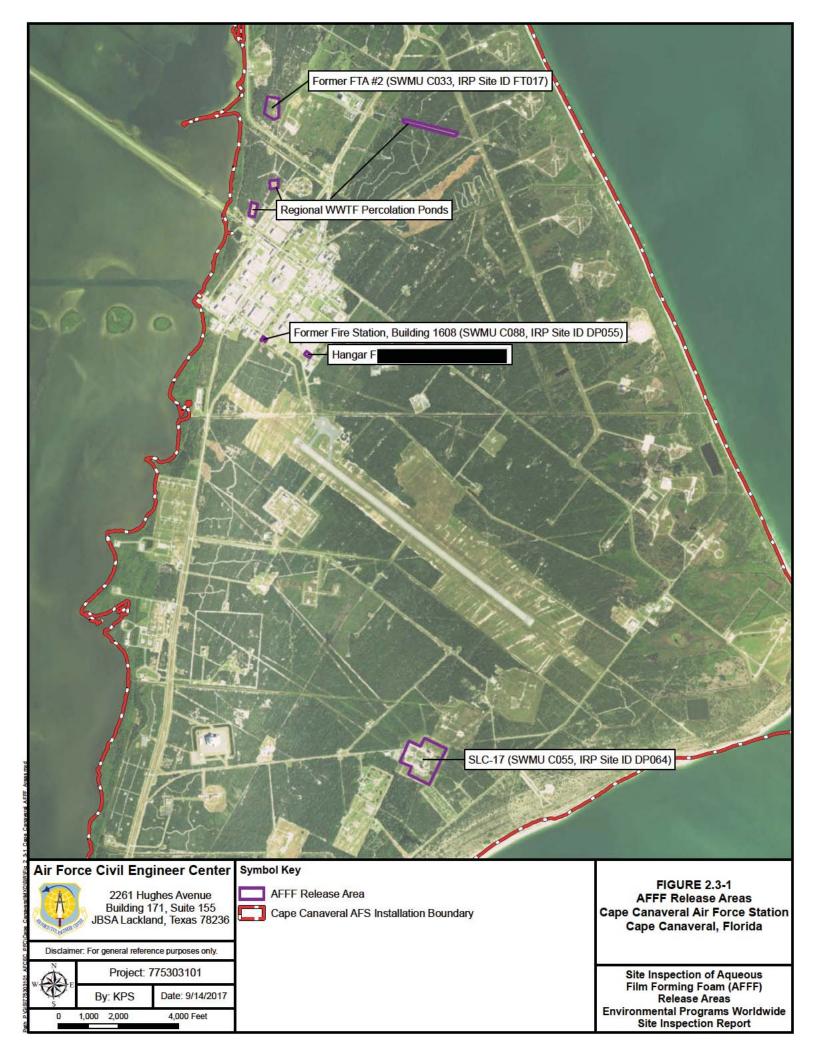
AFFF	aqueous film forming foam
ft bgs	feet below ground surface
μg/L	micrograms per liter
mg/kg	milligrams per kilogram
PFAS	per- and polyfluorinated alkyl substances
PFBS	perfluorobutanesulfonic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
SB	soil boring
SD	sediment

FIGURE NOTES

Shaded = Exceeds USEPA Health Advisory Value

Groundwater elevations in NAVD88 (feet)

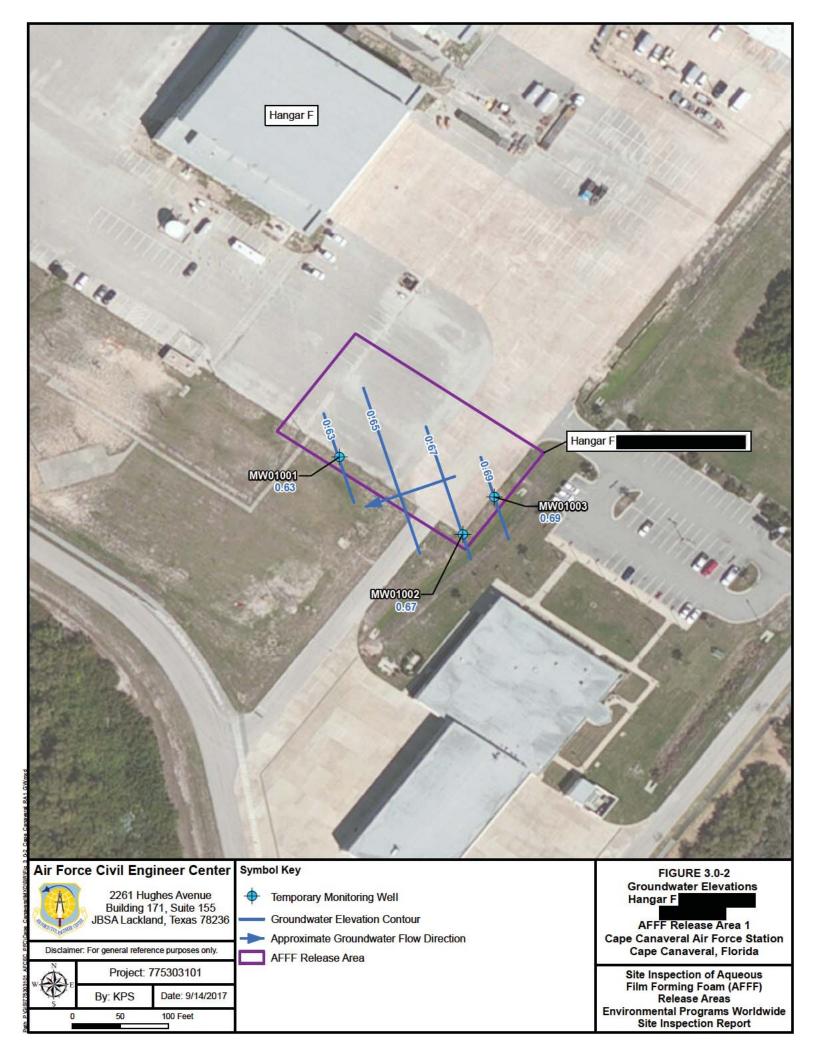

^A Higher concentration observed in field duplicate sample

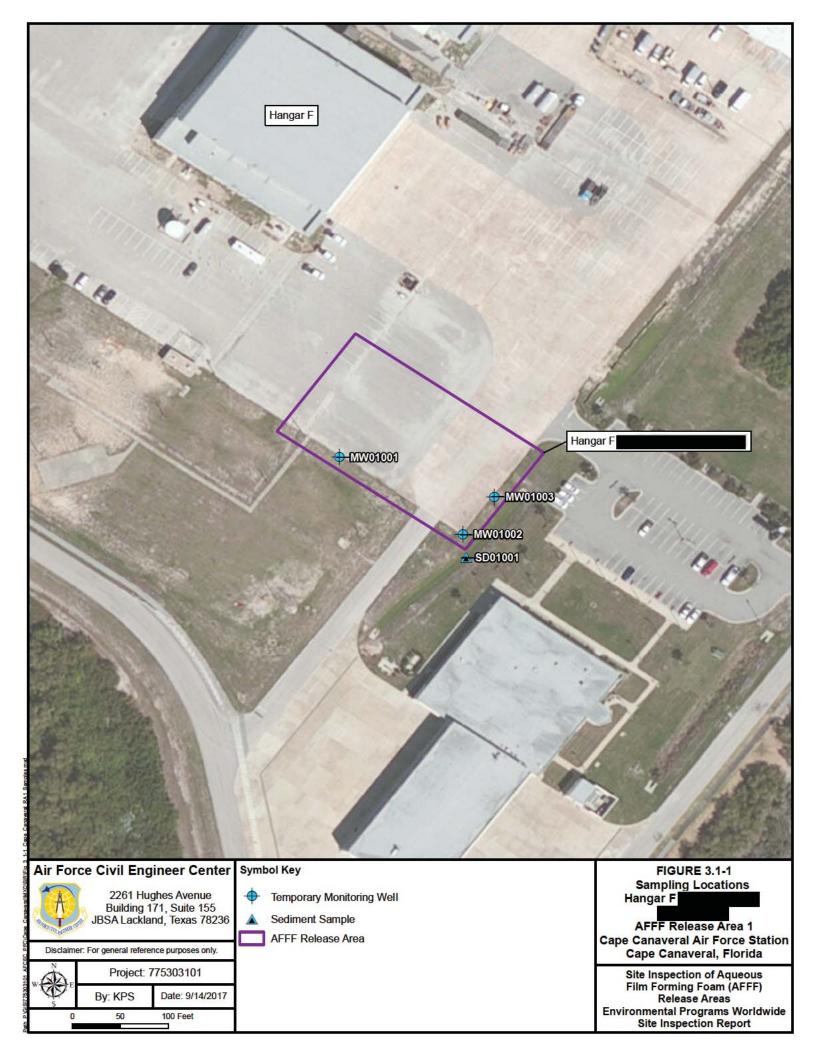

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample

U = The analyte was analyzed for, but was not detected above the reported limit of detection

UJ = The reported quantitation limit is approximate and may or may not represent the actual limit

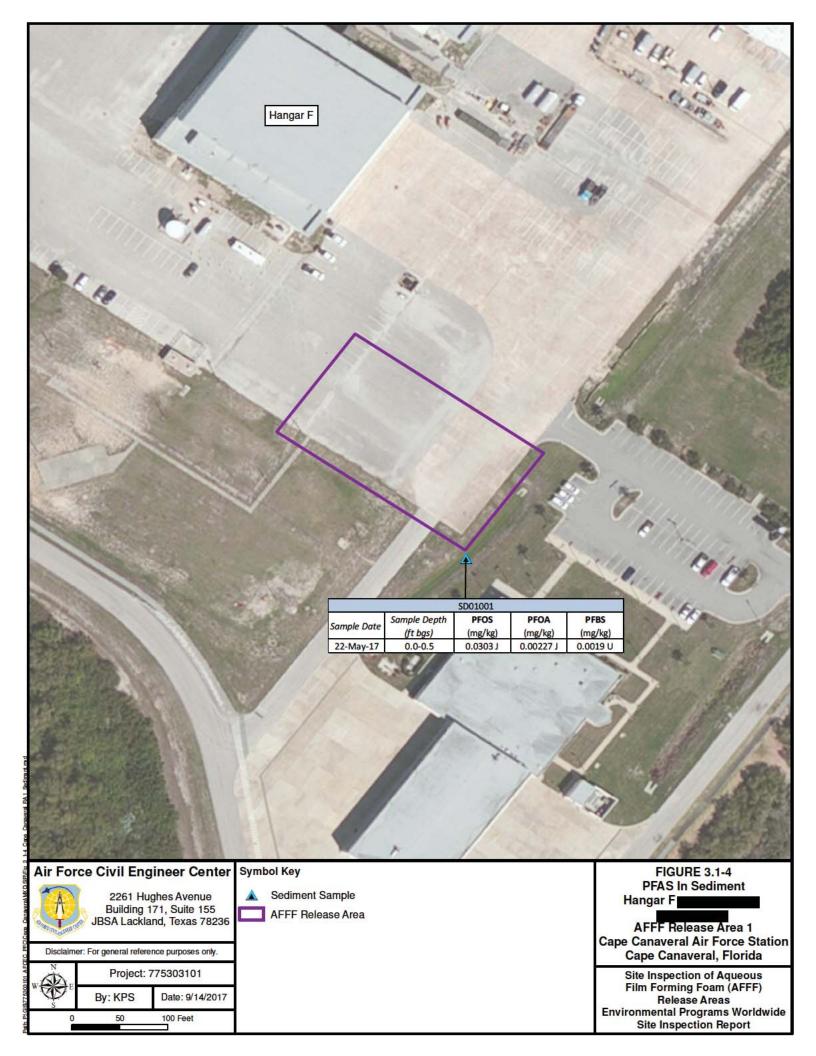
of quantitation necessary to accurately and precisely measure the analyte in the sample


			Distance Along Baseline	e (feet)
Reparent Manual math	Air Force Civil Engineer Center 2261 Hughes Avenue Building 171, Suite 155 JBSA Lackland, Texas 78236	Symbol Key	USCS Poor y graded Sand USCS Poor y graded Sand w th S t	A A A
N	Project: 775303101	Approx mate Water Tab e	USCS S ty Sand	-MVV01008
W	By A Yorke Date 07/12/2017	Screen	amsl = above mean sea level	
Š	amec foster wheeler 🦄	Disclaimer For general purposes only		


FIGURE 3.0-1 Cross-Section A-A'

AFFF Release Area 1 Hangar F Cape Canaveral Air Force Station Cape Canaveral, FL

13


S te Inspect on of Aqueous F m Form ng Foam (AFFF) Re ease Areas Env ronmenta Programs Wor dw de S te Inspect on Report

MW01001 FEQA PEQA MU01001 Sample Date Sample Depth FOOS PEOA Mu0101 Sample Date Sample Depth FOOS MU0101 Sample Date Sample	MW01003 PFOS PFOA (mg/kg) (mg/kg) 0.00327 J 0.000727 J 0.00098 U 0.000562 J 0.0011 U 0.0011 U
MW01002 Sample Date Sample Depth If the second seco	
The Farea Civil Engineer Center Symbol Kay	
Air Force Civil Engineer Center 2261 Hughes Avenue Building 171, Suite 155 JBSA Lackland, Texas 78236 Disclaimer: For general reference purposes only. N Project: 775303101 By: KPS Date: 9/14/2017 0 50 100 Feet	FIGURE 3.1-2 PFAS In Soil Hangar F AFFF Release Area 1 Cape Canaveral Air Force Station Cape Canaveral, Florida Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas Environmental Programs Worldwide Site Inspection Report

MW010 Sample Depth PFOS	Hangar F	
Sample Date Sample Depth (ft bgs) Pros (µg/L) 24-May-17 4.8-14.8 0.0421 ^A	PFOA PFOATPPOS PFBS (µg/L) (µg/L) (µg/L) 0.0281 ^A 0.0702 ^A 0.0211 ^A	MW01003 Sample Depth PFOS PFOA PFOA+PFOS PFBS (ft bgs) (µg/L) (µg/L) (µg/L) (µg/L)
all and	24-May-1	
	*	1 3. 200
		+ 2 7 Ka
	*	A A A A A A A A A A A A A A A A A A A
Sample Date Sample Depth PFO		1. 19/199
Sumple Date (ft bgs) (µg/ 24-May-17 4.8-14.8 0.094		
	12	
		5 11/4
		× / // //
Contraction and		
Air Force Civil Engineer Center	Symbol Key Temporary Monitoring Well	FIGURE 3.1-3 PFAS In Groundwater Hangar F
Building 171, Suite 155 JBSA Lackland, Texas 78236	Approximate Groundwater Flow Direction	AFFF Release Area 1
Disclaimer: For general reference purposes only.	AFFF Release Area	Cape Canaveral Air Force Station Cape Canaveral, Florida
Project: 775303101 By: KPS Date: 9/14/2017		Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas
0 50 100 Feet		Environmental Programs Worldwide Site Inspection Report

TABLES

This page intentionally left blank.

Table 3.0-1Monitoring Well Construction DetailsSite Inspection of Aqueous Film Forming Foam (AFFF) Release AreasSite Inspection Report, Cape Canaveral AFS, Florida

AFFF Release Area	Location ID	Installation Date	Well Material	Northing	Easting	Ground Elevation (ft amsl)	TOC Elevation (ft amsl)	Well Depth (ft bgs)	Well Diameter (in)	Screen Length (ft)	Screen Size (in)	Screen Interval (ft bgs)
	MW01001	5/22/2017	PVC			7.0	6.97	15.0	2	10	0.01	4.8-14.8
1	MW01002	5/22/2017	PVC			6.2	6.19	15.0	2	10	0.01	4.8-14.8
	MW01003	5/22/2017	PVC			6.1	6.11	15.0	2	10	0.01	4.8-14.8

Notes:

amsl - above mean sea level

bgs - below ground surface

ft - feet

in - inches

PVC - Polyvinyl Chloride

TOC - top of casing

Table 3.0-2 **Groundwater Elevations** Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas Site Inspection Report, Cape Canaveral AFS, Florida

AFFF Release Area	Location ID	Well Depth (ft bgs)	Ground Surface Elevation (ft amsl)	TOC Elevation (ft amsl)	Date Measured	Depth to Groundwater (ft btoc)	Groundwater Elevation (ft amsl)
	MW01001	15.0	7.2	6.97	5/24/2017	6.34	0.63
1	MW01002	15.0	6.3	6.19	5/24/2017	5.52	0.67
	MW01003	15.0	6.2	6.11	5/24/2017	5.42	0.69

Notes:

amsl - above mean sea level bgs - below ground surface btoc - below top of casing ft - feet

TOC - top of casing

Summary of Soil Analytical Testing Results Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas Site Inspection Report, Cape Canaveral Air Force Station, Florida

					Analyte:	Perfluoroocta (P	Perfluorooctanoic acid (PFOA)	Perfluorobutanesulfonic acid (PFBS)	6:2 Fluorotelomer sulfonate (6:2 FTS)	8:2 Fluorotelomer sulfonate (8:2 FTS)	N-Ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	N-Methyl perfluorooctanesulfonamido acetic acid (NMEFOSAA)	Perfluorodecanoic acid (PFDA)	Perfluorododecanoic acid (PFDoA)	Perfluoroheptanoic acid (PFHpA)	Perfluorohexanesulfonic acid (PFHxS)	Perfluorohexanoic acid (PFHxA)	Perfluorononanoic acid (PFNA)	Perfluorotetradecanoic acid (PFTeDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluoroundecanoic acid (PFUnA)
					ning Level:	1.26 ¹	1.26 ¹	1300 ²	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AFFF Release Area	Location	Sample ID	Sample Date	Sample Depth (ft)	Sample Type	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	MW01001	CAPEC01-SO-001	22-May-17	0.0-0.5	Ν	0.00832	0.00095 U	0.00095 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.00095 U	0.00095 U	0.000826 J	0.00113 J	0.00162 J	0.00095 U	0.00095 U	0.00095 U	0.00095 U
	101001	CAPEC01-SO-002	22-May-17	3.0-4.0	N	0.0017 J	0.001 U	0.001 U	0.004 U	0.004 U	0.004 U	0.004 U	0.001 U	0.001 U	0.001 U	0.000746 J	0.000414 J	0.001 U	0.001 U	0.001 U	0.001 U
	NAN/01002	CAPEC01-SO-003	22-May-17	0.0-0.5	N	0.00127 J	0.00097 U	0.00097 U	0.0039 U	0.0039 U	0.00192 J	0.00192 J	0.000864 J	0.0105	0.00097 U	0.00097 U	0.000502 J	0.00097 U	0.00518	0.00397	0.00157 J
1	MW01002	CAPEC01-SO-004	22-May-17	3.0-4.0	N	0.0011 U	0.0011 U	0.0011 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0011 U	0.00102 J	0.0011 U	0.0011 U	0.000227 J	0.0011 U	0.0011 U	0.0011 U	0.0011 U
		CAPEC01-SO-005	22-May-17	0.0-0.5	N	0.00327 J	0.000727 J	0.00098 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.00186 J	0.00118 J	0.0012 J	0.00098 U	0.00127 J	0.000738 J	0.000663 J	0.00053 J	0.00108 J
	MW01003	CAPEC-FD-SO-001	22-May-17	0.0-0.5	FD	0.000897 J	0.001 U	0.001 U	0.004 U	0.004 U	0.004 U	0.004 U	0.001 U	0.000778 J	0.001 U	0.001 U	0.000373 J	0.001 U	0.001 U	0.001 U	0.001 U
		CAPEC01-SO-006	22-May-17	3.0-4.0	Ν	0.000562 J	0.0011 U	0.0011 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0011 U	0.000864 J	0.0011 U	0.0011 U	0.000307 J	0.0011 U	0.0011 U	0.0011 U	0.0011 U

Notes:

PFAS analysis by Modified USEPA Method 537 using Liquid Chromatography and Tandem Mass Spectrometry

¹Screening levels, based on residential exposure, calculated using the EPA Regional Screening Level calculator [https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search]

²USEPA Residential Screening Levels (June 2017) [https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-june-2017]

Highlighted cells indicate concentrations exceeding the Screening Level.

FD - field duplicate sample

ft - feet

ID - identification

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

mg/kg - milligrams per kilogram

N - normal field sample

NA - not applicable

U - The analyte was analyzed for but was not detected above the reporting limit of detection (LOD).

Summary of Soil General Chemistry Analytical Testing Results Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas Site Inspection Report, Cape Canaveral Air Force Station, Florida

					Analyte:	Hd	TOC
AFFF Release Area	Location	Sample ID	Sample Date	Sample Depth (ft)	Sample Type	S. U.	mg/kg
1		CAPEC01-(0-1)	22-May-17	0.0-1.0	N	8.31	5850
T	CAPEC_AREA_01	CAPEC01-(3-4)	22-May-17	3.0-4.0	N	8.48	1590

Notes:

ft - feet

ID - identification

N - normal field sample

mg/kg - milligrams per kilogram

S.U. - standard units

TOC - Total Organic Carbon

Summary of Groundwater Analytical Testing Results Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas Site Inspection Report, Cape Canaveral Air Force Station, Florida

						acid (PFOS)	d (PFOA)		acid (PFBS)	ate (6:2 FTS)	ate (8:2 FTS)	midoacetic A)	midoacetic A)	id (PFDA)	sid (PFDoA)	d (PFHpA)	acid (PFHxS)	d (PFHxA)	id (PFNA)	cid (PFTeDA)	id (PFTrDA)	id (PFUnA)
					Analyte:	Perfluorooctanesulfonic	Perfluorooctanoic aci	PFOS+PFOA	Perfluorobutanesulfonic	6:2 Fluorotelomer sulfon	8:2 Fluorotelomer sulfon	N-Ethyl perfluorooctanesulfona acid (NETFOSA	N-Methyl perfluorooctanesulfona acid (NMEFOSA	Perfluorodecanoic ac	Perfluorododecanoic ac	Perfluoroheptanoic aci	Perfluorohexanesulfonic	Perfluorohexanoic aci	Perfluorononanoic ac	Perfluorotetradecanoic a	Perfluorotridecanoic ac	Perfluoroundecanoic ac
			U	SEPA Health /	Advisory ¹ :	0.07	0.07	0.07	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	-		ι	JSEPA Tap W	ater RSL ² :	NA	NA	NA	380	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AFFF Release Area	Location	Sample ID	Sample Date	Sample Depth (ft)	Sample Type	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	MW01001	CAPEC01-GW-001	24-May-17	4.8-14.8	N	0.0409	0.0262	0.0671	0.0203	0.031 U	0.031 U	0.031 U	0.031 U	0.012 U	0.012 UJ	0.0141 J	0.0507	0.03	0.0062 U	0.012 UJ	0.012 UJ	0.012 U
1		CAPEC-FD-GW-001	24-May-17	4.8-14.8	FD	0.0421	0.0281	0.0702	0.0211	0.032 U	0.032 U	0.032 U	0.032 U	0.012 U	0.012 UJ	0.0136 J	0.0539	0.0297	0.0064 U	0.012 UJ	0.012 UJ	0.012 U
	MW01002	CAPEC01-GW-002	24-May-17	4.8-14.8	Ν	0.0942 J	0.0377	0.1319 J	0.012 U	0.033 U	0.033 U	0.033 U	0.033 U	0.00836 J	0.012 UJ	0.103	0.0574	0.121	0.0136 J	0.012 UJ	0.012 UJ	0.012 U
	MW01003	CAPEC01-GW-003	24-May-17	4.8-14.8	Ν	0.0659	0.0339	0.0998	0.012 U	0.032 U	0.032 U	0.032 U	0.032 U	0.012 U	0.012 UJ	0.105	0.0367	0.12	0.00796 J	0.012 UJ	0.012 UJ	0.012 U

Notes:

PFAS analysis by Modified USEPA Method 537 using Liquid Chromatography and Tandem Mass Spectrometry

¹Health Advisory from USEPA Office of Water, 2016a and 2016b, Health Advisories (HAs) for drinking water.

²USEPA Residential Screening Levels (June 2017a) [https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-june-2017]

Highlighted cells indicate concentrations exceeding USEPA Health Advisory

Underlined results indicate concentrations exceeding the USEPA Tap Water RSL

PFOS+PFOA = Co-occurrence of PFOA and PFOS (PFOA + PFOS) in aqueous samples is reported using the following guidelines

1. If both PFOA and PFOS are detected at or above the detection limit (DL), then the sum of PFOA+ PFOS is reported

2. If only PFOS or only PFOA is detected at or above the DL in groundwater, then the concentration of the detected analyte only is reported

3. If neither PFOA nor PFOS is detected at or above the DL, then PFOA + PFOS is reported as "ND" representing Not Detected

FD - field duplicate sample

ft - feet

ID - identification

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample

µg/L - micrograms per liter

N - normal field sample

NA - not applicable

U - The analyte was analyzed for but was not detected above the reporting limit of detection (LOD)

UJ - The reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample

Summary of Sediment Analytical Testing Results Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas Site Inspection Report, Cape Canaveral Air Force Station, Florida

					Analyte:	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	Perfluorobutanesulfonic acid (PFBS)	6:2 Fluorotelomer sulfonate (6:2 FTS)	8:2 Fluorotelomer sulfonate (8:2 FTS)	N-Ethyl perfluorooctanesulfonamido acetic acid (NETFOSAA)	N-Methyl perfluorooctanesulfonamido acetic acid (NMEFOSAA)	Perfluorodecanoic acid (PFDA)	Perfluorododecanoic acid (PFDoA)	Perfluoroheptanoic acid (PFHpA)	Perfluorohexanesulfonic acid (PFHxS)	Perfluorohexanoic acid (PFHxA)	Perfluorononanoic acid (PFNA)	Perfluorotetradecanoic acid (PFTeDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluoroundecanoic acid (PFUnA)
				Screer	ning Level:	1.26 ¹	1.26 ¹	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AFFF Release Area	Location	Sample ID	Sample Date	Sample Depth (ft)		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1	SD01001	CAPEC01-SD-001	22-May-17	0.0-0.5	N	0.0303 J	0.00227 J	0.0019 U	0.0077 U	0.0077 U	0.0077 UJ	0.0077 UJ	0.00191 J	0.0019 UJ	0.00217 J	0.00136 J	0.00234 J	0.00133 J	0.0019 UJ	0.0019 UJ	0.00109 J
Ţ	3001001	CAPEC-FD-SD-001	22-May-17	0.0-0.5	FD	0.0259 J	0.00134 J	0.0019 U	0.0074 U	0.0074 U	0.0074 U	0.0074 UJ	0.00147 J	0.0019 UJ	0.00127 J	0.000969 J	0.00117 J	0.0019 U	0.0019 UJ	0.0019 UJ	0.000979 J

Notes:

PFAS analysis by Modified USEPA Method 537 using Liquid Chromatography and Tandem Mass Spectrometry

¹Screening levels, based on residential exposure, calculated using the EPA Regional Screening Level calculator [https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search]

Highlighted cells indicate concentrations exceeding the Screening Level.

FD - field duplicate sample

ft - feet

ID - identification

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

mg/kg - milligrams per kilogram

N - normal field sample

NA - not applicable

U - The analyte was analyzed for but was not detected above the reporting limit of detection (LOD).

UJ - The reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Table 4.0-1

Conceptual Site Model: Installation-Wide Summary Site Inspection Report of Aqueous Film Forming Foam (AFFF) Release Areas Site Inspection Report, Cape Canaveral Air Force Station, Florida

Facility Profile	Physical Profile	Release Profile	Land Use and Exposure Profile	Ecological Profile
Installation Description/History:	Topography:	Contaminants of Potential Concern:	Current Land Use:	Potential Ecological Receptors
Years of operation: 1949 to present.	CCAFS lies within the within the Atlantic Barrier Chain Physiographic	 PFAS are the contaminants of potential 	 Occupied by CCAFS. 	(HGL, 2015):
Size: Approximately 15,800 acres (25 square miles).	Province at a mean elevation of 10 feet above mean sea level (amsl), with	concern during this investigation.	Future Land Use:	 Inland and aquatic plant
Location: East-central Florida coast, approximately 11 miles	dunal formations immediately inland of the Atlantic Ocean beach forming	 Petroleum-related compounds, 	 Land use is not expected to 	species, reptiles, birds, and
north of Patrick AFB, in Brevard County, Florida.	the highest ridges (10 to 15 feet) that slope gradually to the west to form a	chlorinated solvents, metals,	change in the future.	mammals that inhabit or
Layout: Comprised of one active runway (CCAFS Skid Strip) in	marshy shoreline along the Banana River (Shaw, 2006).	polychlorinated biphenyls (PCBs), and	Potential Receptors:	migrate through or adjacent to
the central portion; maintenance, support, operational, and	Vegetation:	PFAS are historical site contaminants.	Potential receptors associated	the installation.
service facilities north of the runway/flightline; and numerous	• The major vegetative communities on CCAFS include the Banana River,	Media of Potential Concern:	with current and future land	• Banana River.
former and active space launch complexes in the coastal	estuarine tidal marshswamp, and brackish water impoundments (aquatic),	 Soil, sediment, and groundwater. 	use include USAF personnel,	 Multiple wetlands on and
portions of the installation.	and beach dune, coastal interdunal swale, oak scrub, and hammocks	Confirmed AFFF Releases:	tenant unit personnel,	adjacent to the installation.
• History: CCAFS was established in 1949 by the USAF with the	(terrestrial) (Shaw, 2006).	• Hangar F	commercial space operations	Threatened and Endangered
primary mission to provide a site for launching National	Surface Water:	PFOS and PFOS+PFOA concentrations in	personnel, contract personnel,	Species (United States Fish and
Aeronautics and Space Administration, Department of Defense,	• The surface water features at CCAFS consists of manmade ditches,	groundwater exceeded the USEPA HA	grounds maintenance	Wildlife Service, 2016):
and commercial satellites into various earth orbits or deep space	culverts, and drainage canals that collect and divert rainwater westward	values during this SI.	workers, utility workers,	Threatened species that were
mission. The installation was re-named Cape Kennedy Air Force	into the Banana River (Shaw, 2006).	Former FTA #2: PFOS and PFOA	construction workers, visitors,	identified in Brevard County
Station on 22 January 1964, and CCAFS in 1973. A total of 36	Soils:	concentrations in groundwater exceeded	and trespassers.	and may exist at CCAFS include
launch complexes were constructed at CCAFS; however, only	• Eleven soil types were identified at CCAFS, with the three most prominent	the USEPA HA values in January 2011,		the following:
three are still active: SLC-37, SLC-40, and SLC-41.	soils comprising the moderately well-drained Canaveral-Palm Beach-	March 2012, and November and		Wood stork - Bird (<u>Mycteria</u>
• Current Mission: CCAFS is the primary launch facility associated	Welaka association generally consisting of a mixture of light-colored quartz	December 2012. Subsurface soil also		<u>americana</u>).
with the Eastern Test Range, and is managed and operated by	sand grains and multicolored shell fragments (Shaw, 2006).	exceeded the calculated RSL, based on a		Audubon's crested caracara
the 45 SW headquartered at Patrick AFB, located approximately	Geology:	residential scenario, in November 2012.		- Bird (Polyborus plancas
11 miles to the south.	• Surficial sediments consist of 110 feet of undifferentiated Pleistocene and	Former Fire Station, Building 1608: PFOS		audubonii)
AFFF Use:	Holocene beach deposits underlain by coquina and sandy clay of the	and PFOA concentrations in groundwater		Florida scrub-jay – Bird
• AFFF containing PFAS was used for firefighting training activities,	Anastasia Formation, the Caloosahatchee Marl Formation, and limestone	exceeded the USEPA HA values in three		(Aphelocoma coerulescens)
testing of firefighting equipment, or extinguishing petroleum	of the Tamiami Formation (Shaw, 2006).	existing monitoring wells in March 2012.		Southeastern beach mouse
fires.	The underlying Miocene Age Hawthorn Group is approximately 70 feet thick and is approximately follow (Shaw 2000)	SLC-17: PFOA concentrations in		– Mammal (Peromyscus
• The following AFFF release area was sampled under this Site	thick and is composed predominantly of clays (Shaw, 2006).	groundwater and surface water exceeded		polionotus niveiventris)
Inspection (SI) since it had not been previously investigated for PFAS:	Hydrogeology:	the USEPA HA values in two of three		Loggerhead sea turtle –
	The surficial aquifer system is contained in undifferentiated Late Miocene, Discourse and Research Disistence denosite compared primarily of medium	existing monitoring wells in April 2014.		Reptile (<i>Caretta caretta</i>) Atlantic salt marsh snake
 Hangar F The following four AFFF release areas were evaluated, but not 	Pliocene, and Recent Pleistocene deposits composed primarily of medium to coarse quartz sands and coquina under unconfined conditions (Shaw,	Regional WWTF Percolation Ponds: PFOS		• Atlantic sait marsh shake (Nerodia clarkia taeniata)
sampled, under this SI since PFAS were identified at	2006).	concentrations in groundwater exceeded		Eastern Indigo Snake -
concentrations above regulatory screening levels during	 Groundwater within the surficial aquifer was encountered during this SI at 	the USEPA HA values in seven existing		Reptile (Drymarchon corais
previous investigations:	approximately 5 to 6 feet below ground surface, and flowed to the west-	monitoring wells in October 2016.		couperi)
Former FTA #2.	northwest at an average hydraulic gradient of 0.004 feet/feet.	Primary Release Pathways:		 Endangered species that were
 Former Fire Station, Building 1608. 	 The Floridan Aquifer is comprised of a series of highly permeable 	Release or application of AFFF to the ground at natential source areas		identified in Brevard County
 SLC-17. 	limestone formations of the Eocene Age Ocala Group and Avon Park	ground at potential source areas. • Infiltration of PFAS deeper into the soil		and may exist at CCAFS include
Regional WWTF Percolation Ponds.	Limestone that is separated from the surficial aquifer by the Hawthorn	column over time reaching groundwater.		the following:
• Regional www.r.r.e.colation.r.onus.	Group, which acts as an aquitard (Shaw, 2006).	 AFFF washed into drainage, storm water, 		 Everglade snail kite - Bird
	Meteorology:	and sewer systems.		(Rostrhamus sociabilis
	 Average annual rainfall is approximately 50 inches/year (Shaw, 2006). 	Secondary Release Pathways:		plumbeus).
	 Average high temperature of 81 degrees Fahrenheit (°F) occurs in July, 	Discharge of WWTF liquid effluent into		West Indian Manatee –
	while an average low of 64.4°F occurs in January (Shaw, 2006).	percolation ponds that infiltrate to		mammal (Trichechus manatus)
		groundwater.		Hawksbill sea turtle –
		bioditamater.		Reptile (Eretmochelys
				imbricata)
				Leatherneck sea turtle –
				Reptile (Dermochelys coriacea)

APPENDIX A

NOBLIS (UNPUBLISHED), UCLA AND ARCADIS (2014), SCF (2014), AND VZ TECHNOLOGIES, LLC (2016) DATA TABLES AND FIGURES This page intentionally left blank.

Client Sample ID	Sample Depth (ft bgs)	Matrix	Sample Information	Collected	Analyte	Resul	t	Unit
TB-1			trip blank	1/26/2011	13C8 PFOA	0.2		ug/L
TB-1		Water	trip blank		13C8 PFOS	0.2		ug/L
TB-1		Water	trip blank	1/26/2011	Perfluorobutane Sulfonate (PFBS)	ND		ug/L
TB-1		Water	trip blank		Perfluorobutanoic acid (PFBA)	ND		ug/L
TB-1		Water	trip blank	1/26/2011	Perfluorodecane sulfonate (PFDS)	ND		ug/L
TB-1		Water	trip blank	1/26/2011	Perfluorodecanoic acid (PFDA)	ND		ug/L
TB-1		Water	trip blank	1/26/2011	Perfluorododecanoic acid (PFDoA)	ND		ug/L
TB-1		Water	trip blank	1/26/2011	Perfluoroheptanoic acid (PFHpA)	ND		ug/L
TB-1		Water	trip blank	1/26/2011	Perfluorohexane Sulfonate (PFHxS)	ND		ug/L
TB-1		Water	trip blank	1/26/2011	Perfluorohexanoic acid (PFHxA)	ND		ug/L
TB-1		Water	trip blank	1/26/2011	Perfluorononanoic acid (PFNA)	ND		ug/L
TB-1		Water	trip blank	1/26/2011	Perfluorooctane Sulfonamide (FOSA)	ND		ug/L
TB-1		Water	trip blank		Perfluorooctane Sulfonate (PFOS)	ND		ug/L
TB-1		Water	trip blank	1/26/2011	Perfluorooctanoic acid (PFOA)	ND		ug/L
TB-1			trip blank		Perfluoropentanoic acid (PFPA)	ND		ug/L
TB-1			trip blank		Perfluorotetradecanoic acid (PFTeA)	ND		ug/L
TB-1	1		trip blank		Perfluorotridecanoic Acid (PFTriA)	ND		ug/L
TB-1			trip blank		Perfluoroundecanoic acid (PFUnA)	ND	-	ug/L
CCFTA2-09S			normal sample		13C8 PFOA	0.19		ug/L
CCFTA2-095			normal sample		13C8 PFOA	0.19		ug/L
CCFTA2-09S CCFTA2-09S	<u> </u>		normal sample		13C8 PFOA	0.19	Ľ	
						-		ug/L
CCFTA2-09S			normal sample		13C8 PFOS	0.19	μ.	ug/L
CCFTA2-09S			normal sample		Perfluorobutane Sulfonate (PFBS)	0.67		ug/L
CCFTA2-09S		Water	normal sample		Perfluorobutanoic acid (PFBA)	0.31		ug/L
CCFTA2-09S			normal sample		Perfluorodecane sulfonate (PFDS)	0.029	<u> </u>	ug/L
CCFTA2-09S			normal sample		Perfluorodecanoic acid (PFDA)	0.017	J	ug/L
CCFTA2-09S			normal sample		Perfluorododecanoic acid (PFDoA)	ND		ug/L
CCFTA2-09S			normal sample		Perfluoroheptanoic acid (PFHpA)	0.18		ug/L
CCFTA2-09S		Water	normal sample	1/26/2011	Perfluorohexane Sulfonate (PFHxS)	24		ug/L
CCFTA2-09S		Water	normal sample	1/26/2011	Perfluorohexanoic acid (PFHxA)	4.7		ug/L
CCFTA2-09S		Water	normal sample	1/26/2011	Perfluorononanoic acid (PFNA)	0.11		ug/L
CCFTA2-09S		Water	normal sample	1/26/2011	Perfluorooctane Sulfonamide (FOSA)	0.015	J	ug/L
CCFTA2-09S		Water	normal sample	1/26/2011	Perfluorooctane Sulfonate (PFOS)	6.8		ug/L
CCFTA2-09S		Water	normal sample	1/26/2011	Perfluorooctanoic acid (PFOA)	0.61		ug/L
CCFTA2-09S		Water	normal sample	1/26/2011	Perfluoropentanoic acid (PFPA)	0.7		ug/L
CCFTA2-09S		Water	normal sample	1/26/2011	Perfluorotetradecanoic acid (PFTeA)	ND		ug/L
CCFTA2-09S		Water	normal sample	1/26/2011	Perfluorotridecanoic Acid (PFTriA)	ND		ug/L
CCFTA2-09S			normal sample		Perfluoroundecanoic acid (PFUnA)	ND		ug/L
CCFTA2-06S	1		normal sample		13C8 PFOA	0.2	-	ug/L
CCFTA2-06S	1	Water	normal sample		13C8 PFOA	0.2		ug/L
CCFTA2-06S	1		matrix spike		13C8 PFOA	0.191	É	ug/L
CCFTA2-06S	1		matrix spike duplicate		13C8 PFOA	0.191	1-	ug/L
CCFTA2-06S			matrix spike duplicate	1/26/2011		0.189		ug/L
CCFTA2-06S			matrix spike duplicate	1/26/2011		0.189		ug/L
CCFTA2-06S			matrix spike		13C8 PFOS	0.180		ug/L
CCFTA2-06S CCFTA2-06S	<u> </u>		normal sample		13C8 PFOS	0.210		
								ug/L
CCFTA2-06S			matrix spike		13C8 PFOS	0.191	<u> </u>	ug/L
CCFTA2-06S			matrix spike duplicate	1/26/2011		0.19		ug/L
CCFTA2-06S		Water	matrix spike duplicate		13C8 PFOS	0.184	-	ug/L
CCFTA2-06S	<u> </u>		normal sample		13C8 PFOS	0.18	-	ug/L
CCFTA2-06S			matrix spike		Perfluorobutane Sulfonate (PFBS)	0.256	-	ug/L
CCFTA2-06S	ļ		matrix spike duplicate		Perfluorobutane Sulfonate (PFBS)	0.208	L	ug/L
CCFTA2-06S		Water	normal sample	1/26/2011	· · · · ·	0.04		ug/L
CCFTA2-06S			matrix spike		Perfluorobutanoic acid (PFBA)	0.209	_	ug/L
CCFTA2-06S		Water	matrix spike duplicate	1/26/2011	Perfluorobutanoic acid (PFBA)	0.209		ug/L
CCFTA2-06S		Water	normal sample	1/26/2011	Perfluorobutanoic acid (PFBA)	0.039	L	ug/L
CCFTA2-06S		Water	normal sample	1/26/2011	Perfluorodecane sulfonate (PFDS)	ND		ug/L
CCFTA2-06S			matrix spike		Perfluorodecane sulfonate (PFDS)	0.127		ug/L
CCFTA2-06S	İ	Water	matrix spike duplicate		Perfluorodecane sulfonate (PFDS)	0.111		ug/L
CCFTA2-06S	t	Water	normal sample		Perfluorodecanoic acid (PFDA)	ND	-	ug/L

Client Sample ID	Sample Depth (ft bgs)	Matrix	Sample Information	Collected	Analyte	Resul	t	Unit
CCFTA2-06S		Water	matrix spike	1/26/2011	Perfluorodecanoic acid (PFDA)	0.172		ug/L
CCFTA2-06S		Water	matrix spike duplicate	1/26/2011	Perfluorodecanoic acid (PFDA)	0.163		ug/L
CCFTA2-06S		Water	normal sample	1/26/2011	Perfluorododecanoic acid (PFDoA)	ND		ug/L
CCFTA2-06S		Water	matrix spike	1/26/2011	Perfluorododecanoic acid (PFDoA)	0.161		ug/L
CCFTA2-06S		Water	matrix spike duplicate	1/26/2011	Perfluorododecanoic acid (PFDoA)	0.157		ug/L
CCFTA2-06S		Water	matrix spike	1/26/2011	Perfluoroheptanoic acid (PFHpA)	0.239		ug/L
CCFTA2-06S		Water	matrix spike duplicate	1/26/2011	Perfluoroheptanoic acid (PFHpA)	0.222		ug/L
CCFTA2-06S		Water	normal sample	1/26/2011	Perfluoroheptanoic acid (PFHpA)	0.085		ug/L
CCFTA2-06S		Water	matrix spike	1/26/2011	Perfluorohexane Sulfonate (PFHxS)	2.53	4	ug/L
CCFTA2-06S		Water	matrix spike duplicate	1/26/2011	Perfluorohexane Sulfonate (PFHxS)	2.33	4	
CCFTA2-06S			normal sample	1/26/2011	Perfluorohexane Sulfonate (PFHxS)	2.1		ug/L
CCFTA2-06S			matrix spike		Perfluorohexanoic acid (PFHxA)	0.415		ug/L
CCFTA2-06S		Water	matrix spike duplicate		Perfluorohexanoic acid (PFHxA)	0.409		ug/L
CCFTA2-06S		Water	normal sample		Perfluorohexanoic acid (PFHxA)	0.23		ug/L
CCFTA2-06S			matrix spike		Perfluorononanoic acid (PFNA)	0.198		ug/L
CCFTA2-06S			matrix spike duplicate		Perfluorononanoic acid (PFNA)	0.196		ug/L
CCFTA2-06S CCFTA2-06S			normal sample		Perfluorononanoic acid (PFNA)	0.196		
CCFTA2-06S		Water	normal sample		Perfluoronotanoic acid (PENA) Perfluorooctane Sulfonamide (FOSA)	0.032 ND	5	ug/L ug/L
CCFTA2-06S					Perfluorooctane Sulfonamide (FOSA) Perfluorooctane Sulfonamide (FOSA)	0.178	-	<u> </u>
		Water	matrix spike duplicate		\ /		-	ug/L
CCFTA2-06S			matrix spike		Perfluorooctane Sulfonamide (FOSA)	0.168	-	ug/L
CCFTA2-06S			matrix spike		Perfluorooctane Sulfonate (PFOS)	4.61	4	
CCFTA2-06S			normal sample		Perfluorooctane Sulfonate (PFOS)	3.8		ug/L
CCFTA2-06S		Water	matrix spike duplicate		Perfluorooctane Sulfonate (PFOS)		_	ug/L
CCFTA2-06S		Water	matrix spike		Perfluorooctanoic acid (PFOA)	0.429		ug/L
CCFTA2-06S			matrix spike duplicate		Perfluorooctanoic acid (PFOA)	0.378		ug/L
CCFTA2-06S			normal sample		Perfluorooctanoic acid (PFOA)	0.23		ug/L
CCFTA2-06S			matrix spike		Perfluoropentanoic acid (PFPA)	0.252		ug/L
CCFTA2-06S			matrix spike duplicate	1/26/2011	Perfluoropentanoic acid (PFPA)	0.237		ug/L
CCFTA2-06S		Water	normal sample	1/26/2011	Perfluoropentanoic acid (PFPA)	0.064		ug/L
CCFTA2-06S		Water	normal sample	1/26/2011	Perfluorotetradecanoic acid (PFTeA)	ND		ug/L
CCFTA2-06S		Water	matrix spike	1/26/2011	Perfluorotetradecanoic acid (PFTeA)	0.212		ug/L
CCFTA2-06S		Water	matrix spike duplicate	1/26/2011	Perfluorotetradecanoic acid (PFTeA)	0.193		ug/L
CCFTA2-06S		Water	normal sample	1/26/2011	Perfluorotridecanoic Acid (PFTriA)	ND		ug/L
CCFTA2-06S		Water	matrix spike	1/26/2011	Perfluorotridecanoic Acid (PFTriA)	0.157		ug/L
CCFTA2-06S		Water	matrix spike duplicate	1/26/2011	Perfluorotridecanoic Acid (PFTriA)	0.152		ug/L
CCFTA2-06S		Water	normal sample	1/26/2011	Perfluoroundecanoic acid (PFUnA)	ND		ug/L
CCFTA2-06S		Water	matrix spike	1/26/2011	Perfluoroundecanoic acid (PFUnA)	0.176		ug/L
CCFTA2-06S		Water	matrix spike duplicate	1/26/2011	Perfluoroundecanoic acid (PFUnA)	0.168		ug/L
CCFTA2-06SDP			duplicate sample	1/26/2011	13C8 PFOA	0.2		ug/L
CCFTA2-06SDP		Water	duplicate sample	1/26/2011	13C8 PFOA	0.19	D	ug/L
CCFTA2-06SDP			duplicate sample		13C8 PFOS	0.19		ug/L
CCFTA2-06SDP		Water	duplicate sample		13C8 PFOS	0.18		ug/L
CCFTA2-06SDP		Water	duplicate sample		Perfluorobutane Sulfonate (PFBS)	0.043		ug/L
CCFTA2-06SDP			duplicate sample		Perfluorobutanoic acid (PFBA)	0.040		ug/L
CCFTA2-06SDP			duplicate sample		Perfluorodecane sulfonate (PFDS)	ND		ug/L
CCFTA2-06SDP			duplicate sample		Perfluorodecanoic acid (PFDA)	ND	-	ug/L
CCFTA2-06SDP			duplicate sample		Perfluorododecanoic acid (PFDoA)	ND	-	ug/L
CCFTA2-06SDP		Water	duplicate sample		Perfluoroheptanoic acid (PFHpA)	0.076		ug/L
CCFTA2-06SDP CCFTA2-06SDP		Water	duplicate sample		Perfluorohexane Sulfonate (PFHxS)	2.2	-	
			duplicate sample				-	ug/L
CCFTA2-06SDP					Perfluorohexanoic acid (PFHxA)	0.23	-	ug/L
CCFTA2-06SDP			duplicate sample		Perfluorononanoic acid (PFNA)	0.028	J	ug/L
CCFTA2-06SDP		Water	duplicate sample		Perfluorooctane Sulfonamide (FOSA)	ND 2.0		ug/L
CCFTA2-06SDP		Water	duplicate sample		Perfluorooctane Sulfonate (PFOS)	3.9		ug/L
CCFTA2-06SDP		Water	duplicate sample		Perfluorooctanoic acid (PFOA)	0.21		ug/L
CCFTA2-06SDP	 		duplicate sample		Perfluoropentanoic acid (PFPA)	0.062	<u> </u>	ug/L
CCFTA2-06SDP			duplicate sample		Perfluorotetradecanoic acid (PFTeA)	ND		ug/L
CCFTA2-06SDP		Water	duplicate sample		Perfluorotridecanoic Acid (PFTriA)	ND		ug/L
CCFTA2-06SDP		Water	duplicate sample	1/26/2011	Perfluoroundecanoic acid (PFUnA)	ND		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	13C8 PFOA	0.2		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	13C8 PFOA	0.2	D	ug/L

Client Sample ID	Sample Depth (ft bgs)	Matrix	Sample Information	Collected	Analyte	Resul	t	Unit
CCFTA2-07S		Water	normal sample	1/26/2011	13C8 PFOS	0.21		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	13C8 PFOS	0.16	D	ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluorobutane Sulfonate (PFBS)	0.58		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluorobutanoic acid (PFBA)	0.3		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluorodecane sulfonate (PFDS)	0.041		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluorodecanoic acid (PFDA)	0.033		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluorododecanoic acid (PFDoA)	ND		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluoroheptanoic acid (PFHpA)	0.33		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluorohexane Sulfonate (PFHxS)	12		ug/L
CCFTA2-07S			normal sample	1/26/2011	Perfluorohexanoic acid (PFHxA)	3.4		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluorononanoic acid (PFNA)	0.21		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluorooctane Sulfonamide (FOSA)	0.061		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluorooctane Sulfonate (PFOS)	53		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluorooctanoic acid (PFOA)	1.9		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluoropentanoic acid (PFPA)	0.88		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluorotetradecanoic acid (PFTeA)	ND		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluorotridecanoic Acid (PFTriA)	ND		ug/L
CCFTA2-07S		Water	normal sample	1/26/2011	Perfluoroundecanoic acid (PFUnA)	ND		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	13C8 PFOA	0.19		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	13C8 PFOS	0.2		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluorobutane Sulfonate (PFBS)	0.05		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluorobutanoic acid (PFBA)	0.031		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluorodecane sulfonate (PFDS)	ND		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluorodecanoic acid (PFDA)	ND		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluorododecanoic acid (PFDoA)	ND	1	ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluoroheptanoic acid (PFHpA)	0.079		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluorohexane Sulfonate (PFHxS)	1.4		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluorohexanoic acid (PFHxA)	0.21		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluorononanoic acid (PFNA)	ND		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluorooctane Sulfonamide (FOSA)	ND		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluorooctane Sulfonate (PFOS)	1.9		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluorooctanoic acid (PFOA)	0.15		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluoropentanoic acid (PFPA)	0.056		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluorotetradecanoic acid (PFTeA)	ND		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluorotridecanoic Acid (PFTriA)	ND		ug/L
CCFTA2-17		Water	normal sample	1/27/2011	Perfluoroundecanoic acid (PFUnA)	ND		ug/L
FT17-N	0-0.5	Solid	normal sample	1/27/2011	13C8 PFOA	21		ug/Kg
FT17-N	0-0.5	Solid	normal sample	1/27/2011	13C8 PFOS	20		ug/Kg
FT17-N	0-0.5	Solid	normal sample	1/27/2011	Perfluorobutane Sulfonate (PFBS)	0.27	J	ug/Kg
FT17-N	0-0.5	Solid	normal sample	1/27/2011	Perfluorobutanoic acid (PFBA)	0.71	J	ug/Kg
FT17-N	0-0.5	Solid	normal sample		Perfluorodecane sulfonate (PFDS)	20	İ 🗌	ug/Kg
FT17-N	0-0.5	Solid	normal sample		Perfluorodecanoic acid (PFDA)	ND	İ	ug/Kg
FT17-N	0-0.5	Solid	normal sample		Perfluorododecanoic acid (PFDoA)	0.72	J	ug/Kg
FT17-N	0-0.5	Solid	normal sample		Perfluoroheptanoic acid (PFHpA)	0.83		ug/Kg
FT17-N	0-0.5	Solid	normal sample	1/27/2011	Perfluorohexane Sulfonate (PFHxS)	4.6		ug/Kg
FT17-N	0-0.5	Solid	normal sample	1/27/2011	Perfluorohexanoic acid (PFHxA)	2.8		ug/Kg
FT17-N	0-0.5	Solid	normal sample	1/27/2011	Perfluorononanoic acid (PFNA)	ND		ug/Kg
FT17-N	0-0.5	Solid	normal sample	1/27/2011	Perfluorooctane Sulfonamide (FOSA)	7		ug/Kg
FT17-N	0-0.5	Solid	normal sample	1/27/2011	Perfluorooctane Sulfonate (PFOS)	42		ug/Kg
FT17-N	0-0.5	Solid	normal sample	1/27/2011	Perfluorooctanoic acid (PFOA)	1.6		ug/Kg
FT17-N	0-0.5	Solid	normal sample	1/27/2011	Perfluoropentanoic acid (PFPA)	1.3		ug/Kg
FT17-N	0-0.5	Solid	normal sample	1/27/2011	Perfluorotetradecanoic acid (PFTeA)	ND		ug/Kg
FT17-N	0-0.5	Solid	normal sample	1/27/2011	· · · · · · · · · · · · · · · · · · ·	ND	 	ug/Kg
FT17-N	0-0.5	Solid	normal sample		Perfluoroundecanoic acid (PFUnÁ)	0.99		ug/Kg
FT17-S	0-0.5	Solid	normal sample		13C8 PFOA	19		ug/Kg
FT17-S	0-0.5	Solid	normal sample		13C8 PFOS	19		ug/Kg
FT17-S	0-0.5	Solid	normal sample		Perfluorobutane Sulfonate (PFBS)	0.28		ug/Kg
FT17-S	0-0.5	Solid	normal sample	1/27/2011	· · · · ·	0.35	-	ug/Kg
FT17-S	0-0.5	Solid	normal sample		Perfluorodecane sulfonate (PFDS)	ND	É	ug/Kg
FT17-S	0-0.5	Solid	normal sample		Perfluorodecanoic acid (PFDA)	ND	-	ug/Kg

Client Sample ID	Sample Depth	Matrix	Sample Information	Collected	Analyte	Resul	t	Unit
	(ft bgs)							
FT17-S	0-0.5	Solid	normal sample		Perfluorododecanoic acid (PFDoA)	ND		ug/Kg
FT17-S	0-0.5	Solid	normal sample		Perfluoroheptanoic acid (PFHpA)	ND		ug/Kg
FT17-S	0-0.5	Solid	normal sample		Perfluorohexane Sulfonate (PFHxS)	3.5		ug/Kg
FT17-S	0-0.5	Solid	normal sample		Perfluorohexanoic acid (PFHxA)	3.3		ug/Kg
FT17-S	0-0.5	Solid	normal sample		Perfluorononanoic acid (PFNA)	ND		ug/Kg
FT17-S	0-0.5	Solid	normal sample		Perfluorooctane Sulfonamide (FOSA)	0.33	J	ug/Kg
FT17-S	0-0.5	Solid	normal sample		Perfluorooctane Sulfonate (PFOS)	2.3		ug/Kg
FT17-S	0-0.5	Solid	normal sample	1/27/2011	Perfluorooctanoic acid (PFOA)	ND		ug/Kg
FT17-S	0-0.5	Solid	normal sample		Perfluoropentanoic acid (PFPA)	1.4		ug/Kg
FT17-S	0-0.5	Solid	normal sample		Perfluorotetradecanoic acid (PFTeA)	ND		ug/Kg
FT17-S	0-0.5	Solid	normal sample	1/27/2011	Perfluorotridecanoic Acid (PFTriA)	ND		ug/Kg
FT17-S	0-0.5	Solid	normal sample	1/27/2011	Perfluoroundecanoic acid (PFUnA)	ND		ug/Kg
FT17-E	0-0.5	Solid	normal sample	1/27/2011	13C8 PFOA	20		ug/Kg
FT17-E	0-0.5	Solid	normal sample	1/27/2011	13C8 PFOS	20		ug/Kg
FT17-E	0-0.5	Solid	normal sample	1/27/2011	Perfluorobutane Sulfonate (PFBS)	ND		ug/Kg
FT17-E	0-0.5	Solid	normal sample	1/27/2011	Perfluorobutanoic acid (PFBA)	0.17	J	ug/Kg
FT17-E	0-0.5	Solid	normal sample	1/27/2011	Perfluorodecane sulfonate (PFDS)	2	ĺ	ug/Kg
FT17-E	0-0.5	Solid	normal sample		Perfluorodecanoic acid (PFDA)	ND		ug/Kg
FT17-E	0-0.5	Solid	normal sample		Perfluorododecanoic acid (PFDoA)	ND		ug/Kg
FT17-E	0-0.5	Solid	normal sample		Perfluoroheptanoic acid (PFHpA)	ND		ug/Kg
FT17-E	0-0.5	Solid	normal sample		Perfluorohexane Sulfonate (PFHxS)	1.6		ug/Kg
FT17-E	0-0.5	Solid	normal sample	1/27/2011	· · · · · · · · · · · · · · · · · · ·	0.7	J	ug/Kg
FT17-E	0-0.5	Solid	normal sample		Perfluorononanoic acid (PFNA)	ND	<u> </u>	ug/Kg
FT17-E	0-0.5	Solid	normal sample		Perfluorooctane Sulfonamide (FOSA)	2		ug/Kg
FT17-E	0-0.5	Solid	normal sample		Perfluorooctane Sulfonate (PFOS)	8		ug/Kg
FT17-E	0-0.5	Solid	normal sample		Perfluorooctanoic acid (PFOA)	0.29		ug/Kg
FT17-E	0-0.5	Solid			, , , , , , , , , , , , , , , , , , ,	0.29		
			normal sample		Perfluoropentanoic acid (PFPA)		J	ug/Kg
FT17-E	0-0.5	Solid	normal sample		Perfluorotetradecanoic acid (PFTeA)	ND		ug/Kg
FT17-E	0-0.5	Solid	normal sample		Perfluorotridecanoic Acid (PFTriA)	ND	-	ug/Kg
FT17-E	0-0.5	Solid	normal sample		Perfluoroundecanoic acid (PFUnA)	ND		ug/Kg
FT17-W	0-0.5	Solid	normal sample		13C8 PFOA	21		ug/Kg
FT17-W	0-0.5	Solid	normal sample	1/27/2011	1	19	<u> </u>	ug/Kg
FT17-W	0-0.5	Solid	normal sample		Perfluorobutane Sulfonate (PFBS)	0.32	_	ug/Kg
FT17-W	0-0.5	Solid	normal sample		Perfluorobutanoic acid (PFBA)	0.62	J	ug/Kg
FT17-W	0-0.5	Solid	normal sample		Perfluorodecane sulfonate (PFDS)	1.9		ug/Kg
FT17-W	0-0.5	Solid	normal sample		Perfluorodecanoic acid (PFDA)	ND		ug/Kg
FT17-W	0-0.5	Solid	normal sample		Perfluorododecanoic acid (PFDoA)	ND		ug/Kg
FT17-W	0-0.5	Solid	normal sample		Perfluoroheptanoic acid (PFHpA)	0.89		ug/Kg
FT17-W	0-0.5	Solid	normal sample		Perfluorohexane Sulfonate (PFHxS)	11		ug/Kg
FT17-W	0-0.5	Solid	normal sample	1/27/2011	Perfluorohexanoic acid (PFHxA)	4.7		ug/Kg
FT17-W	0-0.5	Solid	normal sample	1/27/2011	Perfluorononanoic acid (PFNA)	ND		ug/Kg
FT17-W	0-0.5	Solid	normal sample	1/27/2011	Perfluorooctane Sulfonamide (FOSA)	11		ug/Kg
FT17-W	0-0.5	Solid	normal sample	1/27/2011	Perfluorooctane Sulfonate (PFOS)	78		ug/Kg
FT17-W	0-0.5	Solid	normal sample		Perfluorooctanoic acid (PFOA)	2.7		ug/Kg
FT17-W	0-0.5	Solid	normal sample	1/27/2011	Perfluoropentanoic acid (PFPA)	1		ug/Kg
FT17-W	0-0.5	Solid	normal sample	1/27/2011	Perfluorotetradecanoic acid (PFTeA)	ND		ug/Kg
FT17-W	0-0.5	Solid	normal sample		Perfluorotridecanoic Acid (PFTriA)	ND		ug/Kg
FT17-W	0-0.5	Solid	normal sample		Perfluoroundecanoic acid (PFUnA)	ND		ug/Kg
CHECK SAMPLE		Water	LAB QA/QC		13C8 PFOA	0.2		ug/L
CHECK SAMPLE		Water	LAB QA/QC		13C8 PFOS	0.194		ug/L
CHECK SAMPLE		Water	LAB QA/QC		Perfluorobutane Sulfonate (PFBS)	0.147		ug/L
CHECK SAMPLE		Water	LAB QA/QC		Perfluorobutanoic acid (PFBA)	0.177		ug/L
CHECK SAMPLE		Water	LAB QA/QC		Perfluorodecane sulfonate (PFDS)	0.113	\vdash	ug/L
CHECK SAMPLE		Water	LAB QA/QC		Perfluorodecanoic acid (PFDA)	0.113	-	ug/L ug/L
					Perfluorododecanoic acid (PFDA)		-	
CHECK SAMPLE						0.177		ug/L
CHECK SAMPLE					Perfluoroheptanoic acid (PFHpA)	0.176	-	ug/L
CHECK SAMPLE		Water	LAB QA/QC		Perfluorohexane Sulfonate (PFHxS)	0.163	<u> </u>	ug/L
CHECK SAMPLE		Water	LAB QA/QC		Perfluorohexanoic acid (PFHxA)	0.183	<u> </u>	ug/L
CHECK SAMPLE		Water	LAB QA/QC	1/31/2011	Perfluorononanoic acid (PFNA)	0.183		ug/L

Client Sample ID	Sample Depth (ft bgs)	Matrix	Sample Information	Collected	Analyte	Result	Unit
CHECK SAMPLE		Water	LAB QA/QC	1/31/2011	Perfluorooctanoic acid (PFOA)	0.181	ug/L
CHECK SAMPLE		Water	LAB QA/QC	1/31/2011	Perfluoropentanoic acid (PFPA)	0.178	ug/L
CHECK SAMPLE		Water	LAB QA/QC	1/31/2011	Perfluorotetradecanoic acid (PFTeA)	0.119	ug/L
CHECK SAMPLE		Water	LAB QA/QC	1/31/2011	Perfluorotridecanoic Acid (PFTriA)	0.142	ug/L
CHECK SAMPLE		Water	LAB QA/QC	1/31/2011	Perfluoroundecanoic acid (PFUnA)	0.183	ug/L
INTRA-LAB BLANK		Water	LAB QA/QC	1/31/2011	13C8 PFOA	0.198	ug/L
INTRA-LAB BLANK		Water	LAB QA/QC		13C8 PFOS	0.199	ug/L
INTRA-LAB BLANK		Water	LAB QA/QC		Perfluorobutane Sulfonate (PFBS)	ND	ug/L
INTRA-LAB BLANK			LAB QA/QC		Perfluorobutanoic acid (PFBA)	ND	ug/L
INTRA-LAB BLANK			LAB QA/QC		Perfluorodecane sulfonate (PFDS)	ND	ug/L
INTRA-LAB BLANK			LAB QA/QC		Perfluorodecanoic acid (PFDA)	ND	ug/L
INTRA-LAB BLANK			LAB QA/QC		Perfluorododecanoic acid (PFDoA)	ND	ug/L
INTRA-LAB BLANK			LAB QA/QC		Perfluoroheptanoic acid (PFHpA)	ND	ug/L
						ND	-
INTRA-LAB BLANK			LAB QA/QC		Perfluorohexane Sulfonate (PFHxS)		ug/L
INTRA-LAB BLANK			LAB QA/QC		Perfluorohexanoic acid (PFHxA)	ND	ug/L
INTRA-LAB BLANK			LAB QA/QC		Perfluorononanoic acid (PFNA)	ND	ug/L
INTRA-LAB BLANK			LAB QA/QC		Perfluorooctane Sulfonate (PFOS)	ND	ug/L
INTRA-LAB BLANK		Water	LAB QA/QC		Perfluorooctanoic acid (PFOA)	ND	ug/L
INTRA-LAB BLANK			LAB QA/QC		Perfluoropentanoic acid (PFPA)	ND	ug/L
INTRA-LAB BLANK		Water	LAB QA/QC		Perfluorotetradecanoic acid (PFTeA)	ND	ug/L
INTRA-LAB BLANK		Water	LAB QA/QC	1/31/2011	Perfluorotridecanoic Acid (PFTriA)	ND	ug/L
INTRA-LAB BLANK		Water	LAB QA/QC	1/31/2011	Perfluoroundecanoic acid (PFUnA)	ND	ug/L
CHECK SAMPLE		Water	LAB QA/QC	1/31/2011	Perfluorooctane Sulfonamide (FOSA)	0.207	ug/L
INTRA-LAB BLANK		Water	LAB QA/QC	1/31/2011	Perfluorooctane Sulfonamide (FOSA)	ND	ug/L
CHECK SAMPLE		Solid	LAB QA/QC	2/1/2011	13C8 PFOA	19.8	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC	2/1/2011	13C8 PFOS	20.4	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC		Perfluorobutane Sulfonate (PFBS)	15.9	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC		Perfluorobutanoic acid (PFBA)	17.1	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC		Perfluorodecane sulfonate (PFDS)	16.7	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC		Perfluorodecanoic acid (PFDA)	17.7	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC		Perfluorododecanoic acid (PFDoA)	17.7	ug/Kg
CHECK SAMPLE		Solid			· · · · · · · · · · · · · · · · · · ·	17.7	
			LAB QA/QC		Perfluoroheptanoic acid (PFHpA)		ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC		Perfluorohexane Sulfonate (PFHxS)	17.1	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC		Perfluorohexanoic acid (PFHxA)	18.2	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC		Perfluorononanoic acid (PFNA)	17.6	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC		Perfluorooctane Sulfonamide (FOSA)	17.9	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC		Perfluorooctane Sulfonate (PFOS)	17.7	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC		Perfluorooctanoic acid (PFOA)	18.4	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC		Perfluoropentanoic acid (PFPA)	17	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC	2/1/2011	Perfluorotetradecanoic acid (PFTeA)	10.9	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC	2/1/2011	Perfluorotridecanoic Acid (PFTriA)	14.2	ug/Kg
CHECK SAMPLE		Solid	LAB QA/QC	2/1/2011	Perfluoroundecanoic acid (PFUnA)	17.8	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC	2/1/2011	13C8 PFOA	19.6	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC	2/1/2011	13C8 PFOS	19.5	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC		Perfluorobutane Sulfonate (PFBS)	ND	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC		Perfluorobutanoic acid (PFBA)	ND	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC		Perfluorodecane sulfonate (PFDS)	ND	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC		Perfluorodecanoic acid (PFDA)	ND	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC		Perfluorododecanoic acid (PFDoA)	ND	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC		Perfluoroheptanoic acid (PFHpA)	ND	ug/Kg
INTRA-LAB BLANK		Solid			Perfluorohexane Sulfonate (PFHxS)	ND	1
					, , , , , , , , , , , , , , , , , , ,		ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC		Perfluorohexanoic acid (PFHxA)	ND	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC		Perfluorononanoic acid (PFNA)	ND	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC		Perfluorooctane Sulfonamide (FOSA)	ND	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC		Perfluorooctane Sulfonate (PFOS)	ND	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC		Perfluorooctanoic acid (PFOA)	ND	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC		Perfluoropentanoic acid (PFPA)	ND	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC	2/1/2011	Perfluorotetradecanoic acid (PFTeA)	ND	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC	2/1/2011	Perfluorotridecanoic Acid (PFTriA)	ND	ug/Kg
INTRA-LAB BLANK		Solid	LAB QA/QC	2/1/2011	Perfluoroundecanoic acid (PFUnA)	ND	ug/Kg

Imagine the result

Field Investigation to Characterize Perfluorinated Compounds (PFCs) at Air Force Sites

Findings from Cape Canaveral Air Force Station and Barksdale Air Force Base

AFCEC BAA 712, Task 3

March 15, 2014

UCLA 😭 ARCADIS

Tables

CCAFS Analytical Results - PFCs in Groundwater Field Investigation to Characterize PFCs at Air Force Sites Cape Canaveral Air Force Station and Barksdale Air Force Base

Sample Location	Sample Date	Perfluorooctane Sulfonate (PFOS) µg/L	Perfluorooctanoic Acid (PFOA) μg/L	Perfluorobutane Sulfonate (PFBS) µg/L	Perfluorobutanoic Acid (PFBA) µg/L	Perfluoropentanoic Acid (PFPA) μg/L	Perfluorohexane Sulfonate (PFHxS) µg/L	Perfluorohexanoic Acid (PFHxA) μg/L	Perfluoroheptanoic Acid (PFHpA) μg/L	Perfluorooctane Sulfonamide (FOSA) μg/L	Perfluorononanoic Acid (PFNA) μg/L	Perfluorodecane Sulfonate (PFDS) µg/L	Perfluorodecanoic Acid (PFDA) µg/L
		C8S	C8A	C4S	C4A	C5A	C6S	C6A	C7A	C8FOSA	C9A	C10S	C10A
CCFTA2-MW07S	11/13/2012	25	1.8	0.33	0.25	0.47	10	2.7	0.2	0.058 M	0.11	0.019 J M	0.015 J
CCFTA2-MW07D	11/13/2012	0.02 U	0.01 U	0.0091 U	0.01 U	0.01 U	0.01 U	0.01 U	0.02 U	0.015 U	0.02 U	0.01 U	0.01 U
CCFTA2-MW014S	11/13/2012	4.4	0.56	0.27	0.14	0.27	6.8	1.4	0.11	0.015 U M	0.028 J	0.01 U	0.01 U
CCFTA2-MW022I	11/13/2012	0.04	0.01 U	0.0092 U	0.01 U M	0.01 U	0.019 J	0.0099 J	0.02 U	0.015 U	0.02 U	0.01 U	0.01 U
CCFTA2-MW022S	11/13/2012	74	3.1	1	0.51	1.3	21	5.4	0.48	0.14 M	0.24	0.038	0.041
CCFTA2-MW023S	11/13/2012	120 M	4.2	1.6	0.63	1.7	43	5.8	0.8	0.31 M	0.37	0.081	0.047
CCFTA2-BKG1	11/15/2012	0.07	0.01 U	0.0092 U	0.01 U	0.01 U	0.036	0.0084 J	0.02 U	0.015 U	0.02 U	0.01 U	0.01 U
CCFTA2-TW1	11/8/2012	7.6	6.6	4.2	0.76	3.4	45	22	0.26	0.033 J M	0.21	0.011 U	0.021 J M
CCFTA2-TW2	11/12/2012	53	4.7	2.3	1.5	3.2	100	11	3.8	0.5	1.1	0.77 M	0.25
CCFTA2-TW3	11/12/2012	1.4	0.12	0.054	0.043	0.066	1.5	0.27	0.066	0.0059 J M	0.019 U	0.0096 U	0.0096 U
CCFTA2-TW4	11/12/2012	8.6	0.25	0.088	0.057	0.13	2.8	0.5	0.058	0.057 J M	0.03 J	0.0099 U	0.0099 U
CCFTA2-VP1-10	11/7/2012	330 J	7.1	2.4	1.6	3	40	13	1.3	0.66 M	0.47	0.17 M	0.068
CCFTA2-VP1-20	11/7/2012	1.1	0.025	0.0085 J	0.025	0.02 J	0.32	0.071	0.021 U	0.016 J M	0.021 U	0.01 U	0.01 U
CCFTA2-VP1-30	12/17/2012	2.6	0.021	0.011 J	0.011 U	0.011 U	0.26	0.044	0.021 U M	0.016 J M	0.021 U	0.011 U	0.011 U
CCFTA2-VP1-40	12/17/2012	1.1	0.011 U	0.0095 U	0.011 U	0.011 U	0.05	0.011 J	0.021 U	0.061	0.021 U	0.011 U	0.011 U
CCFTA2-VP1-50	12/17/2012	2.5	0.012 J	0.0096 U	0.011 U	0.011 U	0.11	0.017 J	0.021 U	0.017 J	0.021 U	0.011 U	0.011 U
CCFTA2-VP1-60	12/17/2012	0.58	0.011 U	0.0096 U	0.011 U	0.011 U	0.016 J	0.0046 J	0.021 U	0.023 J M	0.021 U	0.011 U	0.011 U M
CCFTA2-VP2-10	11/14/2012	0.42	0.17	0.056	0.054	0.065	1.7	0.32	0.029 J	0.015 U M	0.02 U	0.01 U	0.01 U
CCFTA2-VP2-20	11/14/2012	1.9	0.44	0.13	0.087 M	0.17	4.2	0.95	0.082	0.015 J M	0.022 J	0.01 U	0.01 U
CCFTA2-VP2-30	11/14/2012	0.077	0.02 J M	0.0096 U	0.016 J	0.019 J	0.27	0.096	0.015 J	0.015 U	0.021 U	0.011 U	0.011 U
CCFTA2-VP2-40	11/14/2012	0.044	0.01 U	0.0092 U	0.01 U	0.01 U	0.04	0.0088 J	0.02 U	0.016 U	0.02 U	0.01 U	0.01 U
CCFTA2-VP2-50	11/14/2012	0.041	0.011 U	0.0095 U	0.011 U	0.011 U	0.034	0.0089 J	0.021 U	0.016 U M	0.021 U	0.011 U	0.011 U
CCFTA2-VP2-60	11/14/2012	0.044	0.012 U	0.011 U	0.012 U	0.012 U	0.011 J	0.012 U	0.023 U	0.015 U	0.023 U	0.012 U	0.012 U
CCFTA2-VP3-10	11/15/2012	0.98	0.24	0.12	0.084 M	0.12	4.1	0.68	0.05	0.017 U M	0.023 U	0.012 U	0.012 U
CCFTA2-VP3-20	11/15/2012	4.6	0.52	0.15	0.18	0.24	5.9	1.5	0.1	0.019 J M	0.037 J	0.01 U	0.011 J
CCFTA2-VP3-30	11/15/2012	0.28	0.088	0.015 J	0.013 J	0.028 J	0.3	0.12	0.017 J	0.016 U M	0.021 U	0.01 U	0.01 U
CCFTA2-VP3-40	11/15/2012	0.17	0.012 J	0.0097 U	0.011 U	0.011 U	0.11	0.036	0.021 U	0.016 U M	0.021 U	0.011 U	0.011 U
CCFTA2-VP3-50	11/15/2012	0.027 J	0.01 U	0.0093 U	0.01 U	0.01 U	0.0083 J	0.01 U M	0.021 U	0.016 U M	0.021 U	0.01 U	0.01 U
CCFTA2-VP3-60	11/14/2012	0.37	0.03	0.011 U	0.014 J M	0.017 J	0.4	0.094	0.024 U	0.019 U M	0.024 U	0.012 U	0.012 U
CCFTA2-VP4-10	11/16/2012	1.1	0.096	0.015 J	0.03	0.093	0.58	0.25	0.04	0.015 U M	0.02 U	0.01 U	0.01 U
CCFTA2-VP4-20	11/16/2012	24	1.9	0.36	0.26	0.47	16	2.9	0.23	0.059 M	0.11	0.01 U	0.01 U
CCFTA2-VP4-30	11/16/2012	0.12 M	0.2	0.045	0.033 M	0.071	0.69	0.2	0.045	0.016 U	0.02 U	0.01 U	0.01 U
CCFTA2-VP4-40	11/15/2012	0.11	0.01 U	0.0094 U	0.01 U	0.01 U M	0.068	0.019 J	0.021 U	0.015 U	0.021 U	0.01 U	0.01 U
CCFTA2-VP4-50	11/15/2012	0.025 J	0.01 U	0.0091 U	0.01 U	0.01 U M	0.0092 J	0.0055 J	0.02 U	0.016 U M	0.02 U	0.01 U	0.01 U
CCFTA2-VP4-60	11/15/2012	0.061	0.01 U	0.009 U	0.01 U	0.01 U	0.019 J	0.01 U M	0.02 U	0.015 U	0.02 U	0.01 U	0.01 U
CCFTA2-VP5-10	12/18/2012	2	0.012 J	0.0093 U	0.01 U	0.014 J	0.066	0.042	0.015 J	0.015 J M	0.021 U	0.01 U M	0.01 U
CCFTA2-VP5-15	12/18/2012	13	0.44	0.13	0.11	0.23	4	0.98	0.18	0.065 M	0.086	0.017 J M	0.015 J
CCFTA2-VP5-19	12/18/2012	24	1.2 (19')	0.42	0.29	0.57	8.2	2.3	0.34	0.24 M	0.19	0.036 M	0.024
CCFTA2-VP5-23	12/18/2012	7.1	0.3	0.12	0.11	0.19	3.3	0.76	0.14	0.11 M	0.073	0.012 J M	0.011 U
CCFTA2-VP5-28	12/18/2012	1.1	0.14	0.03	0.032	0.056	0.57	0.18	0.046	0.013 J	0.022 U	0.011 U M	0.011 U
CCFTA2-VP5-34	12/18/2012	0.32	0.012 J	0.0094 J	0.011 U	0.017 J	0.13	0.055	0.017 J	0.015 U M	0.022 U	0.011 U	0.011 U
CCFTA2-VP5-40	12/18/2012	1	0.022	0.0095 U	0.011 U	0.018 J	0.2	0.061	0.015 J	0.017 J M	0.021 U	0.011 U	0.011 U
CCFTA2-VP5-55	12/18/2012	0.15	0.011 U	0.0098 U	0.011 U	0.011 U	0.021 J	0.0076 J M	0.022 U	0.018 J M	0.022 U	0.011 U	0.011 U
CCFTA2-VP5-60	12/18/2012	2	0.049	0.022	0.019 J	0.034	0.47	0.14	0.02 J	0.0066 J M	0.02 U	0.0099 U	0.0099 U

CCAFS Analytical Results - PFCs in Groundwater Field Investigation to Characterize PFCs at Air Force Sites Cape Canaveral Air Force Station and Barksdale Air Force Base

Sample Location	Sample Date	Perfluorooctane Sulfonate (PFOS) µg/L	Perfluorooctanoic Acid (PFOA) μg/L	Perfluorobutane Sulfonate (PFBS) µg/L	Perfluorobutanoic Acid (PFBA) µg/L	Perfluoropentanoic Acid (PFPA) μg/L	Perfluorohexane Sulfonate (PFHxS) µg/L	Perfluorohexanoic Acid (PFHxA) μg/L	Perfluoroheptanoic Acid (PFHpA) µg/L	Perfluorooctane Sulfonamide (FOSA) µg/L	Perfluorononanoic Acid (PFNA) μg/L	Perfluorodecane Sulfonate (PFDS) μg/L	Perfluorodecanoic Acid (PFDA) µg/L
		C8S	C8A	C4S	C4A	C5A	C6S	C6A	C7A	C8FOSA	C9A	C10S	C10A
CCFTA2-VP6-10	12/19/2012	0.2	0.0097 U	0.0087 U	0.016 J	0.0097 U	0.075	0.024	0.019 U	0.093 U	0.019 U	0.0097 U	0.0097 U
CCFTA2-VP6-15	12/19/2012	0.25	0.0096 U	0.0087 U	0.0096 U	0.0096 U	0.09	0.014 J	0.019 U	0.015 U M	0.019 U	0.0096 U	0.0096 U
CCFTA2-VP6-19	12/19/2012	0.4	0.025	0.014 J	0.012 J	0.019 J	0.32	0.051	0.017 J	0.035 U	0.02 U	0.0098 U	0.0098 U
CCFTA2-VP6-23	12/19/2012	0.13	0.012 J	0.012 J	0.011 J M	0.013 J	0.18	0.048	0.02 J	0.046 U	0.02 U	0.0099 U	0.0099 U
CCFTA2-VP6-28	12/19/2012	0.04	0.0098 U	0.0089 U	0.0098 U	0.0098 U	0.02 J	0.0063 J	0.02 U	0.032 U M	0.02 U	0.0098 U	0.0098 U
CCFTA2-VP6-34	12/19/2012	0.064	0.01 U	0.0093 U	0.01 U	0.01 U	0.04	0.014 J	0.021 U	0.043 U	0.021 U	0.01 U	0.01 U
CCFTA2-VP6-40	12/19/2012	0.2	0.012 U M	0.011 U	0.012 U	0.012 U	0.016 J	0.013 J	0.025 U	0.016 U M	0.025 U	0.012 U	0.012 U
CCFTA2-VP6-55	12/19/2012	0.061	0.01 U	0.0094 U	0.01 U	0.01 U	0.01 U	0.0036 J	0.021 U	0.036 U	0.021 U	0.01 U	0.01 U
CCFTA2-VP6-60	12/19/2012	0.059	0.0099 U	0.0089 U	0.0099 U	0.0099 U	0.0099 U	0.0029 J	0.02 U	0.017 U M	0.02 U	0.0099 U	0.0099 U
CCFTA2-VP7-10	12/21/2012	0.11	0.031	0.02	0.022 M	0.035	0.12	0.038	0.035	0.015 U	0.02 U	0.01 U	0.01 U
CCFTA2-VP7-15	12/20/2012	0.25	0.058	0.018 J	0.026	0.036	0.11	0.053	0.022 J	0.015 U	0.02 U	0.0098 U	0.0098 U
CCFTA2-VP7-19	12/20/2012	0.049	0.014 J	0.011 J	0.0099 U	0.0099 U	0.03 M	0.022	0.02 U	0.015 U M	0.02 U	0.0099 U	0.0099 U
CCFTA2-VP7-23	12/20/2012	0.07	0.018 J	0.0092 U	0.01 U	0.01 U	0.038	0.022	0.021 U	0.015 U M	0.021 U	0.01 U	0.01 U
CCFTA2-VP7-28	12/20/2012	0.018 J	0.01 U	0.0093 U	0.01 U	0.01 U	0.01 U	0.0037 J M	0.021 U	0.016 U	0.021 U	0.01 U	0.01 U
CCFTA2-VP7-34	12/20/2012	0.023 J	0.01 U	0.0094 U	0.01 U	0.01 U	0.01 U	0.0051 J M	0.021 U	0.015 U M	0.021 U	0.01 U	0.01 U M
CCFTA2-VP7-40	12/20/2012	0.042	0.011 U	0.01 U	0.011 U	0.011 U	0.0079 J	0.005 J M	0.022 U	0.016 U	0.022 U	0.011 U	0.011 U
CCFTA2-VP7-55	12/20/2012	0.019 U	0.0097 U	0.0087 U	0.0097 U	0.0097 U	0.0097 U	0.0097 U	0.019 U	0.015 U	0.019 U	0.0097 U	0.0097 U
CCFTA2-VP7-60	12/20/2012	0.071	0.011 U	0.0097 U	0.011 U	0.011 U	0.011 U	0.0074 J	0.021 U	0.015 U	0.021 U	0.011 U	0.011 U
CCFTA2-VP8-10	12/21/2012	1.2	0.13 M	0.019 J	0.03	0.071	0.13	0.11	0.052	0.0084 J M	0.022 U	0.011 U	0.011 U
CCFTA2-VP8-15	12/21/2012	0.39	0.072	0.041	0.039 M	0.059	0.17	0.081	0.031 J	0.0057 J M	0.022 U	0.011 U	0.011 U
CCFTA2-VP8-19	12/21/2012	0.54	0.024	0.01 U	0.011 U	0.023 J	0.15	0.037	0.022 U	0.015 U M	0.022 U	0.011 U	0.011 U
CCFTA2-VP8-23	12/21/2012	1.4	0.051	0.01 J M	0.013 J	0.025 J	0.38	0.088	0.029 J	0.0086 J M	0.02 U	0.0099 U	0.0099 U
CCFTA2-VP8-28	12/21/2012	0.12	0.0099 U	0.0089 U	0.0099 U	0.0099 U	0.014 J	0.0072 J	0.02 U	0.015 U M	0.02 U	0.0099 U	0.0099 U
CCFTA2-VP8-34	12/21/2012	0.065	0.01 U	0.0094 U	0.01 U	0.01 U	0.01 U	0.0051 J	0.021 U	0.015 U	0.021 U	0.01 U	0.01 U
CCFTA2-VP8-40	12/20/2012	0.1	0.011 U	0.01 U	0.011 U	0.011 U	0.011 J	0.0067 J M	0.022 U	0.015 U M	0.022 U	0.011 U	0.011 U
CCFTA2-VP8-55	12/20/2012	0.021 U	0.01 U	0.0094 U	0.01 U	0.01 U	0.01 U	0.01 U	0.021 U	0.015 U M	0.021 U	0.01 U	0.01 U
CCFTA2-VP8-60	12/20/2012	0.026 J	0.01 U	0.0091 U	0.01 U	0.01 U	0.01 U	0.01 U	0.02 U	0.016 U M	0.02 U	0.01 U	0.01 U
CCFTA2-VP9-10	12/21/2012	0.067	0.0096 U	0.0086 U	0.0096 U M	0.0096 U	0.015 J	0.0086 J	0.019 U	0.015 U M	0.019 U	0.0096 U	0.0096 U
CCFTA2-VP9-15	12/21/2012	0.2	0.051	0.0098 J	0.027	0.025 J	0.071	0.038	0.02 J	0.015 U M	0.02 U	0.0098 U	0.0098 U
CCFTA2-VP9-19	12/21/2012	0.25	0.024	0.0086 U	0.013 J	0.013 J	0.073	0.022	0.015 J	0.0086 J M	0.019 U	0.0096 U	0.0096 U
CCFTA2-VP9-23	12/21/2012	0.15	0.012 J	0.0097 U	0.011 U	0.011 U	0.051	0.021	0.021 U	0.015 U M	0.021 U	0.011 U	0.011 U
CCFTA2-VP9-28	12/21/2012	0.02 U	0.0099 U	0.0089 U	0.0099 U	0.0099 U	0.017 J	0.0063 J	0.02 U	0.015 U	0.02 U	0.0099 U	0.0099 U
CCFTA2-VP9-34	12/21/2012	0.02 U	0.01 U	0.0091 U	0.01 U M	0.01 U	0.0085 J	0.0068 J	0.02 U	0.015 U	0.02 U	0.01 U	0.01 U
CCFTA2-VP9-40	12/21/2012	0.029 J	0.011 U	0.0099 U	0.011 U	0.011 U	0.011 U	0.011 J	0.022 U	0.015 U	0.022 U	0.011 U	0.011 U
CCFTA2-VP9-55	12/21/2012	0.023 U M	0.011 U	0.01 U	0.011 U	0.011 U	0.011 U	0.011 U M	0.023 U	0.015 U	0.023 U	0.011 U	0.011 U
CCFTA2-VP9-60	12/21/2012	0.025 J	0.012 U	0.011 U	0.012 U	0.012 U	0.012 U	0.0044 J M	0.024 U	0.015 U M	0.024 U	0.012 U	0.012 U
CCFTA2-EQB	11/8/2012	0.021 U	0.011 U	0.0095 U	0.011 U	0.011 U	0.0085 J	0.011 U	0.021 U	0.016 U	0.021 U	0.011 U	0.011 U
CCFTA2-TW2-EQB	11/12/2012	0.019 U	0.0096 U	0.0086 U	0.0096 U	0.0096 U	0.0096 U M	0.0096 U	0.019 U	0.015 U	0.019 U	0.0096 U	0.0096 U
CCFTA2-VP1-EQB	11/8/2012	0.02 U	0.01 U	0.009 U	0.01 U	0.01 U	0.01 U	0.01 U	0.02 U	0.015 U	0.02 U	0.01 U	0.01 U
CCFTA2-VP3-EQB	11/14/2012	0.02 U	0.01 U	0.0092 U	0.01 U	0.01 U	0.01 U	0.01 U	0.02 U	0.015 U	0.02 U	0.01 U	0.01 U
CCFTA2-VP4-EQB	11/9/2012	0.02 U	0.01 U	0.009 U	0.01 U	0.01 U	0.01 U	0.01 U	0.02 U		0.02 U	0.01 U	0.01 U
CCFTA2-BKG1-EQB	11/15/2012	0.021 U	0.01 U	0.0093 U	0.01 U	0.01 U	0.01 U	0.01 U	0.021 U	0.015 U	0.021 U	0.01 U	0.01 U
CCFTA2-MW022S-EQB	11/13/2012	0.02 U	0.01 U	0.0091 U	0.01 U	0.01 U	0.01 U	0.01 U	0.02 U	0.015 U	0.02 U	0.01 U	0.01 U
CCFTA2-EQB-20121218	12/18/2012	0.022 U	0.011 U	0.0097 U	0.011 U	0.011 U	0.011 U	0.011 U	0.022 U	0.015 U	0.022 U	0.011 U	0.011 U

CCAFS Analytical Results - PFCs in Groundwater Field Investigation to Characterize PFCs at Air Force Sites Cape Canaveral Air Force Station and Barksdale Air Force Base

Sample Location	Sample Date	Perfluoroundecanoic Acid (PFUnA) µg/L	Perfluorododecanoic Acid (PFDoA) µg/L	Perfluorotridecanoic Acid (PFTriA) μg/L	Perfluorotetradecanoic Acid (PFTeA) μg/L
		C11A	C12A	C13A	C14A
CCFTA2-MW07S	11/13/2012	0.01 U	0.021 U	0.021 U	0.021 U
CCFTA2-MW07D	11/13/2012	0.01 U	0.02 U	0.02 U	0.02 U
CCFTA2-MW014S	11/13/2012	0.01 U	0.021 U	0.021 U	0.021 U
CCFTA2-MW022I	11/13/2012	0.01 U	0.02 U	0.02 U	0.02 U
CCFTA2-MW022S	11/13/2012	0.01 U	0.021 U	0.021 U	0.021 U
CCFTA2-MW023S	11/13/2012	0.01 U	0.02 U	0.02 U	0.02 U
CCFTA2-BKG1	11/15/2012	0.01 U	0.02 U	0.02 U M	0.02 U
CCFTA2-TW1	11/8/2012	0.011 U	0.022 U	0.022 U	0.022 U
CCFTA2-TW2	11/12/2012	0.017 J M	0.019 U	0.019 U	0.019 U
CCFTA2-TW3	11/12/2012	0.0096 U	0.019 U	0.019 U	0.019 U
CCFTA2-TW4	11/12/2012	0.0099 U	0.02 U	0.02 U	0.02 U
CCFTA2-VP1-10	11/7/2012	0.0095 U	0.019 U	0.019 U	0.019 U
CCFTA2-VP1-20	11/7/2012	0.01 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP1-30	12/17/2012	0.011 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP1-40	12/17/2012	0.011 U M	0.021 U	0.021 U	0.021 U
CCFTA2-VP1-50	12/17/2012	0.011 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP1-60	12/17/2012	0.011 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP2-10	11/14/2012	0.01 U	0.02 U	0.02 U	0.02 U
CCFTA2-VP2-20	11/14/2012	0.01 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP2-30	11/14/2012	0.011 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP2-40	11/14/2012	0.01 U	0.02 U	0.02 U	0.02 U
CCFTA2-VP2-50	11/14/2012	0.011 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP2-60	11/14/2012	0.012 U	0.023 U	0.023 U	0.023 U
CCFTA2-VP3-10	11/15/2012	0.012 U	0.023 U	0.023 U	0.023 U
CCFTA2-VP3-20	11/15/2012	0.01 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP3-30	11/15/2012	0.01 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP3-40	11/15/2012	0.011 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP3-50	11/15/2012	0.01 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP3-60	11/14/2012	0.012 U	0.024 U	0.024 U	0.024 U
CCFTA2-VP4-10	11/16/2012	0.01 U	0.02 U	0.02 U	0.02 U
CCFTA2-VP4-20	11/16/2012	0.01 U	0.02 U	0.02 U	0.02 U
CCFTA2-VP4-30	11/16/2012	0.01 U	0.02 U	0.02 U	0.02 U
CCFTA2-VP4-40	11/15/2012	0.01 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP4-50	11/15/2012	0.01 U	0.02 U	0.02 U	0.02 U
CCFTA2-VP4-60	11/15/2012	0.01 U	0.02 U	0.02 U	0.02 U
CCFTA2-VP5-10	12/18/2012	0.01 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP5-15	12/18/2012	0.011 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP5-19	12/18/2012	0.011 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP5-23	12/18/2012	0.011 U	0.023 U	0.023 U	0.023 U
CCFTA2-VP5-28	12/18/2012	0.011 U	0.022 U	0.022 U	0.022 U
CCFTA2-VP5-34	12/18/2012	0.011 U	0.022 U	0.022 U	0.022 U
CCFTA2-VP5-40	12/18/2012	0.011 U	0.021 U	0.021 U	0.021 U
CCFTA2-VP5-55	12/18/2012	0.011 U	0.022 U	0.022 U	0.022 U
CCFTA2-VP5-60	12/18/2012	0.0099 U	0.02 U	0.02 U	0.02 U

ARCADIS

CCAFS Analytical Results - PFCs in Groundwater

Field Investigation to Characterize PFCs at Air Force Sites Cape Canaveral Air Force Station and Barksdale Air Force Base

	Date	Acid (PFUnA) μg/L	Acid (PFDoA) μg/L	Acid (PFTriA) μg/L	Acid (PFTeA) μg/L	
		C11A	C12A	C13A	C14A	-
CCFTA2-VP6-10	12/19/2012	0.0097 U	0.019 U	0.019 U	0.019 U	1
CCFTA2-VP6-15	12/19/2012	0.0096 U	0.019 U	0.019 U	0.019 U	Notes
CCFTA2-VP6-19	12/19/2012	0.0098 U	0.02 U	0.02 U	0.02 U	J - Es
CCFTA2-VP6-23	12/19/2012	0.0099 U	0.02 U	0.02 U	0.02 U	M - N
CCFTA2-VP6-28	12/19/2012	0.0098 U	0.02 U	0.02 U	0.02 U	D - S
CCFTA2-VP6-34	12/19/2012	0.01 U	0.021 U	0.021 U	0.021 U	U - U
CCFTA2-VP6-40	12/19/2012	0.012 U M	0.025 U	0.025 U	0.025 U	C#S
CCFTA2-VP6-55	12/19/2012	0.01 U	0.021 U	0.021 U	0.021 U	C#A
CCFTA2-VP6-60	12/19/2012	0.0099 U	0.02 U	0.02 U	0.02 U	1
CCFTA2-VP7-10	12/21/2012	0.01 U	0.02 U	0.02 U	0.02 U	1
CCFTA2-VP7-15	12/20/2012	0.0098 U	0.02 U	0.02 U	0.02 U	4
CCFTA2-VP7-19	12/20/2012	0.0099 U M	0.02 U	0.02 U	0.02 U	1
CCFTA2-VP7-23	12/20/2012	0.01 U	0.021 U	0.021 U	0.021 U	
CCFTA2-VP7-28	12/20/2012	0.01 U M	0.021 U	0.021 U	0.021 U	_
CCFTA2-VP7-34	12/20/2012	0.01 U	0.021 U	0.021 U	0.021 U	4
CCFTA2-VP7-40	12/20/2012	0.011 U M	0.022 U	0.022 U	0.022 U	_
CCFTA2-VP7-55	12/20/2012	0.0097 U	0.019 U	0.019 U	0.019 U	4
CCFTA2-VP7-60	12/20/2012	0.011 U	0.021 U	0.021 U	0.021 U	_
CCFTA2-VP8-10	12/21/2012	0.011 U	0.022 U	0.022 U	0.022 U	
CCFTA2-VP8-15	12/21/2012	0.011 U	0.022 U	0.022 U	0.022 U	
CCFTA2-VP8-19	12/21/2012	0.011 U	0.022 U	0.022 U	0.022 U	
CCFTA2-VP8-23	12/21/2012	0.0099 U	0.02 U	0.02 U	0.02 U	
CCFTA2-VP8-28	12/21/2012	0.0099 U	0.02 U	0.02 U	0.02 U	
CCFTA2-VP8-34	12/21/2012	0.01 U	0.021 U	0.021 U	0.021 U	
CCFTA2-VP8-40	12/20/2012	0.011 U	0.022 U	0.022 U	0.022 U	
CCFTA2-VP8-55	12/20/2012	0.01 U	0.021 U	0.021 U	0.021 U	
CCFTA2-VP8-60	12/20/2012	0.01 U	0.02 U	0.02 U	0.02 U	4
CCFTA2-VP9-10	12/21/2012	0.0096 U	0.019 U	0.019 U	0.019 U	1
CCFTA2-VP9-15	12/21/2012	0.0098 U	0.02 U	0.02 U	0.02 U	-
CCFTA2-VP9-19	12/21/2012	0.0096 U	0.019 U	0.019 U	0.019 U	1
CCFTA2-VP9-23	12/21/2012	0.011 U	0.021 U	0.021 U	0.021 U	1
CCFTA2-VP9-28	12/21/2012	0.0099 U	0.02 U	0.02 U	0.02 U	1
CCFTA2-VP9-34	12/21/2012	0.01 U	0.02 U	0.02 U	0.02 U	1
CCFTA2-VP9-40	12/21/2012	0.011 U	0.022 U	0.022 U	0.022 U	1
CCFTA2-VP9-55	12/21/2012	0.011 U M	0.023 U	0.023 U	0.023 U	1
CCFTA2-VP9-60	12/21/2012	0.012 U	0.024 U	0.024 U	0.024 U	1
CCFTA2-EQB	11/8/2012	0.011 U	0.021 U	0.021 U	0.021 U	
CCFTA2-TW2-EQB	11/12/2012	0.0096 U	0.019 U	0.019 U	0.019 U	_
CCFTA2-VP1-EQB	11/8/2012	0.01 U	0.02 U	0.02 U	0.02 U	_
CCFTA2-VP3-EQB	11/14/2012	0.01 U M	0.02 U	0.02 U	0.02 U	4
CCFTA2-VP4-EQB	11/9/2012	0.01 U	0.02 U	0.02 U	0.02 U	4
CCFTA2-BKG1-EQB	11/15/2012	0.01 U	0.021 U	0.021 U	0.021 U	4
CCFTA2-MW022S-EQB CCFTA2-EQB-20121218	11/13/2012 12/18/2012	0.01 U 0.011 U	0.02 U 0.022 U	0.02 U 0.022 U	0.02 U 0.022 U	-

J - Estimated: The analyte was positively identified; the quantitation is an estimation

- M Manual integrated compound
- D Sample results are obtained from a dilution; the surrogate or matrix sp ke recoveries reported are calculated from diluted samples U - Undetected at the Limit of Detection

C#S - Indicates that the perfluorinated compound has # carbons and a sulfonyl group C#A - Indicates that the perfluorinated compound has # carbons and a sulfonic acid group

Table 5 CCAFS Analytical Results - AFFF Constituents in Groundwater Field Investigation to Characterize PFCs at Air Force Sites

Cape Canaveral Air Force Station and Barksdale Air Force Base

					Perfluo	roalkyl Car	boxylates	;							Perflu	oroalkyl Su	fonates					
Sample ID	C4 PFBA	C5 PFPeA	C6 PFHxA	C7 PFHpA	C8 PFOA	C9 PFNA	C10 PFDA	C11 PFUdA	C12 PFDoA	C13 PFTrDA	C14 PFTeDA	Sum PFAAs	C4 PFBS	C5 PFPeS	C6 PFHxS	C7 PFHpS	C8 PFOS	C9 PFNS	C10 PFDS	Sum PFAS	Ratio A/S	Ratio S/A
CCFTA2-VP1-10	1700	2800	10000	1800	7500	390	52	ND	ND	ND	ND	24242	2000	2100	75000	1600	190000	250	ND	270,950	0.09	11
CCFTA2-VP1-20	ND	40	67	9	23	<lor< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>139</td><td>ND</td><td><lor< td=""><td>400</td><td>ND</td><td>730</td><td>ND</td><td>ND</td><td>1,130</td><td>0.12</td><td>8</td></lor<></td></lor<>	ND	ND	ND	ND	ND	139	ND	<lor< td=""><td>400</td><td>ND</td><td>730</td><td>ND</td><td>ND</td><td>1,130</td><td>0.12</td><td>8</td></lor<>	400	ND	730	ND	ND	1,130	0.12	8
CCFTA2-VP3-20	140	274	1200	100	360	21	5.2	ND	ND	ND	ND	2100	120	130	5300	71	2400	<lor< td=""><td>ND</td><td>8,021</td><td>0.26</td><td>4</td></lor<>	ND	8,021	0.26	4
CCFTA2-VP3-30	ND	35.9	99	17	66	<lor< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>218</td><td>30</td><td>ND</td><td>410</td><td>5.1</td><td>170</td><td>ND</td><td>ND</td><td>615</td><td>0.35</td><td>3</td></lor<>	ND	ND	ND	ND	ND	218	30	ND	410	5.1	170	ND	ND	615	0.35	3
CCFTA2-VP3-40	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND	13	ND	ND	54	<lor< td=""><td>52</td><td>ND</td><td>ND</td><td>106</td><td>0.12</td><td>8</td></lor<>	52	ND	ND	106	0.12	8
CCFTA2-VP3-50	ND	ND	ND	ND	5.8	ND	ND	ND	ND	ND	ND	6	ND	ND	10	ND	15	ND	ND	25	0.23	4
CCFTA2-VP3-60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	ND	ND	25	ND	42	ND	ND	67	-	-
CCFTA2-VP4-40	ND	ND	23	ND	8.5	ND	ND	ND	ND	ND	ND	32	ND	ND	63	ND	83	ND	ND	146	0.22	5
CCFTA2-VP4-50	ND	ND	ND	ND	6.8	ND	ND	ND	ND	ND	ND	7	ND	ND	11	ND	23	ND	ND	34	0.20	5
CCFTA2-VP4-60	ND	ND	ND	ND	5.6	ND	ND	ND	ND	ND	ND	6	ND	ND	15	ND	31	ND	ND	46	0.12	8
Limit of Quantitation (LOQ)	5	5	5	5	5	5	5	5	5	5	5		5	5	5	5	5	5	5			
Limit of Detection (LOD)	4.1	1.1	1.4	1.8	1.5	1	0.94	0.93	1	1.2	1.7		1.2	1.7	1.7	0.88	0.81	0.81	0.71			
QC Results																						
Solvent Spike 10 ng/L	15	14	9.2	10	12	10	11	6.9*	10	7.1*	10		8	N/A	7	9.4	10	N/A	7.8			
Solvent Spike 30 ng/L	27	25	17	20	23	25	27	23	26	31	21		19*	N/A	20*	25	25	N/A	24			
Extraction Blank	<lod< td=""><td><lod< td=""><td></td><td><lor*< td=""><td><lod< td=""><td><lor< td=""><td><lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<></td></lor<></td></lod<></td></lor*<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lor*< td=""><td><lod< td=""><td><lor< td=""><td><lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<></td></lor<></td></lod<></td></lor*<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lor*< td=""><td><lod< td=""><td><lor< td=""><td><lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<></td></lor<></td></lod<></td></lor*<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lor*< td=""><td><lod< td=""><td><lor< td=""><td><lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<></td></lor<></td></lod<></td></lor*<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lor*< td=""><td><lod< td=""><td><lor< td=""><td><lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<></td></lor<></td></lod<></td></lor*<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lor*< td=""><td><lod< td=""><td><lor< td=""><td><lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<></td></lor<></td></lod<></td></lor*<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lor*< td=""><td><lod< td=""><td><lor< td=""><td><lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<></td></lor<></td></lod<></td></lor*<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lor*< td=""><td><lod< td=""><td><lor< td=""><td><lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<></td></lor<></td></lod<></td></lor*<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lor*< td=""><td><lod< td=""><td><lor< td=""><td><lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<></td></lor<></td></lod<></td></lor*<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td><lor*< td=""><td><lod< td=""><td><lor< td=""><td><lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<></td></lor<></td></lod<></td></lor*<></td></lod<></td></lod<>	<lod< td=""><td></td><td><lor*< td=""><td><lod< td=""><td><lor< td=""><td><lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<></td></lor<></td></lod<></td></lor*<></td></lod<>		<lor*< td=""><td><lod< td=""><td><lor< td=""><td><lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<></td></lor<></td></lod<></td></lor*<>	<lod< td=""><td><lor< td=""><td><lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<></td></lor<></td></lod<>	<lor< td=""><td><lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<></td></lor<>	<lod< td=""><td><lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<></td></lod<>	<lor*< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lor*<>	<lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td></td></lod<>			
Solvent Blank	<lod< td=""><td><lod< td=""><td></td><td>ND</td><td><lod< td=""><td>2</td><td><lod< td=""><td>14*</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>ND</td><td><lod< td=""><td>2</td><td><lod< td=""><td>14*</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>ND</td><td><lod< td=""><td>2</td><td><lod< td=""><td>14*</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>ND</td><td><lod< td=""><td>2</td><td><lod< td=""><td>14*</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>ND</td><td><lod< td=""><td>2</td><td><lod< td=""><td>14*</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>ND</td><td><lod< td=""><td>2</td><td><lod< td=""><td>14*</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>ND</td><td><lod< td=""><td>2</td><td><lod< td=""><td>14*</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>ND</td><td><lod< td=""><td>2</td><td><lod< td=""><td>14*</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>ND</td><td><lod< td=""><td>2</td><td><lod< td=""><td>14*</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td>ND</td><td><lod< td=""><td>2</td><td><lod< td=""><td>14*</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td></td><td>ND</td><td><lod< td=""><td>2</td><td><lod< td=""><td>14*</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>		ND	<lod< td=""><td>2</td><td><lod< td=""><td>14*</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<>	2	<lod< td=""><td>14*</td><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<>	14*	<lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td></td></lod<>			
Linearity (R ²)^	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99		0.99	N/A	0.99	0.99	0.99	N/A	0.99			

Table 5 CCAFS Analytical Results - AFFF Constituents in Groundwater Field Investigation to Characterize PFCs at Air Force Sites

Cape Canaveral Air Force Station and Barksdale Air Force Base

	Fluorot	elomer Sulfo	onates		Perfluoroa	alkyl Sulfonami	do Amines			Perfluoroalky	I Sulfonamide Am	nino Carboxylates		Fluorotelo	mer Thioamido	Sulfonates
Sample ID	4:2 FtS	6:2 FtS	8:2 FtS	C4 PFBSaAm	C5 PFPeSaAm	C6 PFHxSaAm	C7 PFHpSaAm	C8 PFOSaAm	C4 PFBSaAmA	C5 PFPeSaAmA	C6 PFHxSaAmA	C7 PFHpSaAmA	C8 PFOSaAmA	4-2 FtTAoS	6-2 FtTAoS	8-2 FtTAoS
CCFTA2-VP1-10	ND	400	2100	810	420	1600	ND	ND	ND	ND	ND	640	ND	ND	ND	ND
CCFTA2-VP1-20	ND	<lor< td=""><td>>LOR</td><td>ND</td><td><lor< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lor<></td></lor<>	>LOR	ND	<lor< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lor<>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP3-20	ND	<lor< td=""><td>23</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lor<>	23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP3-30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP3-40	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP3-50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP3-60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP4-40	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP4-50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP4-60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Limit of Quantitation (LOQ)	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Limit of Detection (LOD)	1.6	0.84	1.9													
QC Results																
Solvent Spike 10 ng/L	6.5*	11	11	N/A, uses PFO	S cal curve				N/A, uses PF	OS cal curve				N/A	6*	N/A
Solvent Spike 30 ng/L	35	39	33											N/A	32	N/A
Extraction Blank	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Solvent Blank	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Linearity (R ²)^	0.99	0.99	0.99	N/A, uses PFO	S cal curve				N/A, uses PF	OS cal curve	I			N/A	0.99	N/A

*Did not pass

^Ranged from 20-6000 ng/L. 1/x weighted. Reporting limit of 10 for LOQ is due to concentration

of sample through the extraction process

Reporting limit of 10 for LOQ is due to concentration of sample through the extraction process and correspond to the lowest cal bration standard of 20 ng/L

Table 5 CCAFS Analytical Results - AFFF Constituents in Groundwater

Field Investigation to Characterize PFCs at Air Force Sites Cape Canaveral Air Force Station and Barksdale Air Force Base

	Fluorotelomer Thio Hvdroxv Ammonium	Fluo	orotelomer Sulf	onamido Betair	ies	Fluorotelome	er Sulfamido Amines		Fluoro	telomer Betain	es		
Sample ID	6-2 FtTHN	6-2 FtSaB	8-2 FtSaB	10-2 FtSaB	12-2 FtSaB	6-2 FtSaAm	8-2 FtSaAm	5-1-2 FtB	7-1-2 FtB	9-1-2 FtB	5-3 FtB	7-3 FtB	9-3 FtB
CCFTA2-VP1-10	ND	260	ND	ND	ND	ND	ND	ND	ND	ND	61	ND	ND
CCFTA2-VP1-20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP3-20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP3-30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP3-40	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP3-50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP3-60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP4-40	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP4-50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CCFTA2-VP4-60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Limit of Quantitation (LOQ)	5.6	50	50	50	50	41	41	9.6	20	5.3	2.7	5	10
Limit of Detection (LOD)													
QC Results													
Solvent Spike 10 ng/L	16	72	N/A	N/A	N/A	85	N/A	110	120	100	120	67*	48*
Solvent Spike 30 ng/L	33	150*	N/A	N/A	N/A	98*	N/A	82	82	61*	68*	48*	32*
Extraction Blank	23*	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Solvent Blank	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Linearity (R ²)^	0.96*	0.99	N/A	N/A	N/A	0.99	N/A	0.95	0.96	0.97	0.99	0.99	0.99

Notes

All units are in nanograms per liter, ng/L

Solvent spike 10 ng/L QC based on n = 2, acceptance limits 11-20 ng/L for PFCs except Fluorotelomer Sulfonamido Betaines (Acceptance limits 70 - 130 ng/L), 6:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 57-110 ng/L) and 6:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 70 - 130 ng/L), 6:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 57-110 ng/L) and 6:2 FtSaAm and 8:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 70 - 130 ng/L), 6:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 57-110 ng/L) and 6:2 FtSaAm and 8:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 70 - 130 ng/L), 6:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 57-110 ng/L) and 6:2 FtSaAm and 8:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 70 - 130 ng/L), 6:2 FtSaAm and 8:2 FtSaAm and 8:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 70 - 130 ng/L), 6:2 FtSaAm and 8:2 FtSaAm and 8:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 70 - 130 ng/L), 6:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 70 - 130 ng/L), 6:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 70 - 130 ng/L), 6:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 70 - 130 ng/L), 6:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 70 - 130 ng/L), 6:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 70 - 130 ng/L), 6:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 70 - 130 ng/L), 6:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 70 - 130 ng/L), 6:2 FtSa

Solvent spike 30 ng/L QC is based on n = 2, acceptance limit 21-39 ng/L for PFCs except 6:2 FtTHN (acceptance limit 32-59 ng/L), Fluorotelomer Sulfonamido Betaines (Acceptance limits 210 - 390 ng/L), 6:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 170-310 ng/L), and 6:2 FtSaAm and 8:2 FtSaAm (Acceptance limits 70-100%)

Extraction blank QC is based on n = 1, < LOD

Solvent blank QC is based on n = 2, < LOD

Linearity (R^2) is based on 6 points, R2 > 0.97

Non-bolded = data taken from undiluted

Bold = Taken from diluted data

<LOD -- no signal or signal below cal bration curve calculation range

< LOQ -- below lowest cal bration curve point

*Did not pass

^Ranged from 20-6000 ng/L. 1/x weighted. Reporting limit of 10 for LOQ is due to concentration

of sample through the extraction process Reporting limit of 10 for LOQ is due to concentration of sample through

the extraction process and correspond to the lowest cal bration standard of 20 $\mbox{ng/L}$

Table 6

CCAFS Analytical Results - PFCs in Soil and Sediments Field Investigation to Characterize PFCs at Air Force Sites Cape Canaveral Air Force Station and Barksdale Air Force Base

		Perfluorooctane	Perfluorooctanoic	Perfluorobutane	Perfluorobutanoic	Perfluoropentanoic	Perfluorohexane	Perfluorohexanoic	Perfluoroheptanoic	Perfluorooctane	Perfluorononanoic	Perfluorodecane	Perfluorodecanoic
Sample	Sample	Sulfonate	Acid	Sulfonate	Acid	Acid	Sulfonate	Acid	Acid	Sulfonamide	Acid	Sulfonate	Acid
Location	Date	(PFOS)	(PFOA)	(PFBS)	(PFBA)	(PFPA)	(PFHxS)	(PFHxA)	(PFHpA)	(FOSA)	(PFNA)	(PFDS)	(PFDA)
		µg/kg	µg/kg	μg/kg	µg/kg	µg/kg	μg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
		C8S	C8A	C4S	C4A	C5A	C6S	C6A	C7A	C8FOSA	C9A	C10S	C10A
CCFTA2-BKG1-1	11/13/2012	0.32 J	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U
CCFTA2-BKG1-7	11/13/2012	0.91 J	0.71 U	0.71 U	0.22 J	0.71 U	0.21 J	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U
CCFTA2-TW1-1	11/13/2012	240	22	0.31 J	0.72 J	1.4	290	19	1	45	1.4	4	3
CCFTA2-TW1-5	11/13/2012	120	3.8	0.5 J	0.69 J	0.75 J	62	12	0.76 U	0.47 J	1.1	0.76 U	0.76 U M
CCFTA2-TW2-1	11/13/2012	10	0.79 U	0.79 U	0.79 U	0.79 U	3.1	0.37 J	0.79 U	2.2	0.79 U	33 M	0.79 U
CCFTA2-TW2-6	11/13/2012	220	3.5	1.1	0.94 J	2.1	46	9.1	1.7	3	1	2.9	1.8
CCFTA2-TW3-5	11/13/2012	2.6	0.61 U	0.61 U	0.12 J	0.61 U	0.61 U	0.61 U M	0.14 J	0.61 U	0.61 U	0.61 U	0.61 U
CCFTA2-TW4-2.5	11/13/2012	30	1	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U	0.32 J	0.68 U	0.68 U
CCFTA2-VP1-0.5	11/7/2012	18	0.88	0.36 J M	2.9	3.7	13	7.1	0.16 J	3.9	0.26 J	5 M	0.59 U
CCFTA2-VP1-3	11/7/2012	1200	7.3	0.36 J	0.92	1.8	63	14	1.1	120	0.64 U	5.8 M	1.7
CCFTA2-VP1-6	11/7/2012	9300 M	22	3.7	4.2	2.9 M	130	17	3.3	82	6.3	6.1 M	1.7
CCFTA2-VP1-10	11/7/2012	1500	12	2.5	1.5	1.9	68	10	2	16	2.1	0.67 U	0.58 J
CCFTA2-VP1-20	11/7/2012	0.74 U M	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U
CCFTA2-VP1-30	11/7/2012	0.19 J	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
CCFTA2-VP1-40	11/7/2012	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U
CCFTA2-VP1-50	11/8/2012	2.9	0.74 U	0.74 U	0.74 U	0.74 U	0.55 J	0.74 U	0.74 U	0.74 U M	0.74 U	0.74 U	0.74 U
CCFTA2-VP1-60	11/8/2012	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U
CCFTA2-VP2-7	11/8/2012	0.54 J	0.67 U	0.67 U	0.67 U	0.67 U	0.3 J	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U
CCFTA2-VP2-10	11/8/2012	0.27 J	0.66 U	0.66 U	0.24 J M	0.66 U	1.7	0.2 J	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U
CCFTA2-VP2-20	11/8/2012	0.33 J	0.67 U	0.67 U	0.67 U	0.67 U	0.76 J	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U
CCFTA2-VP2-30	11/8/2012	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U
CCFTA2-VP2-40	11/9/2012	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U
CCFTA2-VP2-50	11/9/2012	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U
CCFTA2-VP2-60	11/9/2012	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U
CCFTA2-VP4-7	11/9/2012	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U
CCFTA2-VP4-10	11/9/2012	0.28 J	0.7 U	0.7 U	0.7 U	0.7 U	0.21 J	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
CCFTA2-VP4-20	11/9/2012	13	1	0.74 U	0.74 U	0.74 U	5.6	1.2	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U
CCFTA2-VP4-30	11/9/2012	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U
CCFTA2-VP4-40	11/9/2012	0.78 U	0.78 U	0.78 U	0.2 J	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U M
CCFTA2-VP4-50	11/12/2012	0.69 U	0.69 U	0.69 U	0.69 U	0.69 U	0.69 U	0.69 U	0.69 U	0.69 U	0.69 U	0.69 U	0.69 U
CCFTA2-VP4-60	11/12/2012	0.67 U M	0.67 U	0.67 U	0.14 J	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U
CCFTA2-VP6-5	11/12/2012	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	0.72 J	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U
CCFTA2-VP6-20	11/12/2012	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.2 J	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U
CCFTA2-VP6-30	11/12/2012	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U
CCFTA2-VP6-40	11/12/2012	0.74 U	0.74 U	0.74 U	0.17 J	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U
CCFTA2-VP6-50	11/12/2012	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
CCFTA2-VP6-60	11/13/2012	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U
CCFTA2-BANR1	11/6/2012	1.8 H	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U
CCFTA2-BANR2	11/6/2012	2.2 H	0.8 U	0.8 U	0.78 U H	0.8 U	0.78 U H	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
CCFTA2-BANR3	11/7/2012	4	0.55 U	0.55 U	0.27 J	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U
CCFTA2-BANR4	11/7/2012	3.8	0.24 J	0.59 U	0.59 U	0.59 U	0.37 J	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U
CCFTA2-BANR5	11/7/2012	4.1	0.35 J	0.21 J	0.57 U	0.57 U	0.42 J	0.24 J	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U
CCFTA2-BANR6	11/8/2012	4.7	0.24 J	0.56 U	0.46 J	0.56 U	0.74 J	0.2 J	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U
CCFTA2-BANR7	11/8/2012	4.6	0.21 J	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U	0.55 U
CCFTA2-BANR8	11/8/2012	4.1	0.36 J	0.58 U	0.58 U	0.58 U	0.65 J	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U	0.58 U
CCFTA2-BANR9	11/9/2012	4.2	0.59 U	0.59 U	0.59 U	0.59 U	0.6 J	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U

Table 6

CCAFS Analytical Results - PFCs in Soil and Sediments Field Investigation to Characterize PFCs at Air Force Sites Cape Canaveral Air Force Station and Barksdale Air Force Base

		Perfluoroundecanoic	Perfluorododecanoic	Perfluorotridecanoic	Perfluorotetradecanoic	
Sample	Sample	Acid	Acid	Acid	Acid	
Location	Date	(PFUnA)	(PFDoA)	(PFTriA)	(PFTeA)	
		`µg/kg ́	μg/kg ́	μg/kg	µg/kg ́	
		C11A	C12A	C13A	C14A	
CCFTA2-BKG1-1	11/13/2012	0.59 U	0.59 U	0.59 U	0.59 U	Notes:
CCFTA2-BKG1-7	11/13/2012	0.71 U	0.71 U	0.71 U	0.71 U	J - Estimated: The analyte was positively identified; the quantitation is an estimation
CCFTA2-TW1-1	11/13/2012	0.62 U	0.62 U	0.62 U	0.62 U	M - Manual integrated compound
CCFTA2-TW1-5	11/13/2012	0.76 U	0.76 U	0.76 U	0.76 U	D - Sample results are obtained from a dilution; the surrogate or matrix sp ke recov
CCFTA2-TW2-1	11/13/2012	0.79 U	0.79 U	0.79 U	0.79 U	U - Undetected at the Limit of Detection
CCFTA2-TW2-6	11/13/2012	0.76 U	0.76 U	0.76 U	0.76 U	C#S - Indicates that the perfluorinated compound has # carbons and a sulfonyl gro
CCFTA2-TW3-5	11/13/2012	0.61 U M	0.61 U	0.61 U	0.61 U	C#A - Indicates that the perfluorinated compound has # carbons and a sulfonic aci
CCFTA2-TW4-2.5	11/13/2012	0.68 U	0.68 U	0.68 U	0.68 U	
CCFTA2-VP1-0.5	11/7/2012	0.48 J	0.84 J M	0.59 U J	0.59 U	
CCFTA2-VP1-3	11/7/2012	0.64 J M	0.64 J M	0.64 U	0.64 U	
CCFTA2-VP1-6	11/7/2012	0.69 U	0.69 U	0.69 U	0.69 U	-
CCFTA2-VP1-10	11/7/2012	0.67 U	0.67 U	0.67 U	0.67 U	-
CCFTA2-VP1-20	11/7/2012	0.74 U	0.74 U	0.74 U	0.74 U	-
CCFTA2-VP1-30	11/7/2012	0.7 U	0.7 U	0.7 U	0.7 U	-
CCFTA2-VP1-40	11/7/2012	0.74 U	0.97 J	0.74 U	0.74 U	-
CCFTA2-VP1-50	11/8/2012	0.74 U	0.74 U	0.74 U	0.74 U	-
CCFTA2-VP1-60	11/8/2012	0.71 U	0.71 U	0.71 U	0.71 U	1
CCFTA2-VP2-7	11/8/2012	0.67 U	0.67 U	0.67 U	0.67 U	7
CCFTA2-VP2-10	11/8/2012	0.66 U	0.66 U	0.66 U	0.66 U	-
CCFTA2-VP2-20	11/8/2012	0.67 U	0.67 U	0.67 U	0.67 U	-
CCFTA2-VP2-30	11/8/2012	0.78 U	0.78 U	0.78 U	0.78 U	
CCFTA2-VP2-40	11/9/2012	0.74 U	0.74 U	0.74 U	0.74 U	
CCFTA2-VP2-50	11/9/2012	0.78 U	0.78 U	0.78 U	0.74 U	-
CCFTA2-VP2-60	11/9/2012	0.78 U	0.78 U	0.78 U	0.78 U	1
CCFTA2-VP4-7	11/9/2012	0.71 U	0.71 U	0.71 U	0.71 U	-
CCFTA2-VP4-10	11/9/2012	0.7 U	0.7 U	0.7 U	0.7 U	
CCFTA2-VP4-20	11/9/2012	0.74 U	0.74 U	0.74 U	0.74 U	-
CCFTA2-VP4-30	11/9/2012	0.78 U	0.78 U	0.78 U	0.74 U	
CCFTA2-VP4-40	11/9/2012	0.78 U	0.78 U	0.78 U	0.78 U	
CCFTA2-VP4-50	11/12/2012	0.69 U	0.69 U	0.69 U	0.69 U	
CCFTA2-VP4-60	11/12/2012	0.67 U	0.67 U	0.67 U	0.67 U	-
		0.67 U	0.67 U	0.67 U	0.67 U	
CCFTA2-VP6-5 CCFTA2-VP6-20	11/12/2012 11/12/2012	0.67 U	0.67 U	0.67 U	0.67 U	_
CCFTA2-VP6-20 CCFTA2-VP6-30	11/12/2012	0.85 U	0.76 U	0.05 U	0.83 U	-
CCFTA2-VP6-30 CCFTA2-VP6-40	11/12/2012	0.76 U	0.76 U	0.76 U	0.76 U	-
CCFTA2-VP6-50	11/12/2012	0.7 U	0.7 U	0.7 U	0.7 U	-
CCFTA2-VP6-60	11/13/2012	0.71 U	0.71 U	0.71 U	0.71 U	1
CCFTA2-BANR1	11/6/2012	0.73 U	0.73 U	0.73 U	0.73 U	
CCFTA2-BANR2	11/6/2012	0.8 U	0.8 U	0.8 U	0.73 U	-
CCFTA2-BANR3	11/7/2012	0.55 U	0.55 U	0.55 U	0.55 U	-
CCFTA2-BANR4	11/7/2012	0.59 U	0.59 U	0.59 U	0.59 U	-
CCFTA2-BANR5	11/7/2012	0.57 U	0.55 U	0.57 U	0.55 U	-
CCFTA2-BANR6	11/8/2012	0.56 U	0.56 U	0.56 U	0.56 U	-
CCFTA2-BANR7	11/8/2012	0.55 U	0.55 U	0.55 U	0.55 U	4
CCFTA2-BANR8	11/8/2012	0.58 U	0.58 U	0.58 U	0.58 U	-
	11/9/2012	0.59 U	0.59 U	0.59 U	0.59 U	

ation

coveries reported are calculated from diluted samples

group acid group

Table 15 BAFB Analytical Results - AFFF Constituents in Groundwater Field Investigation to Characterize PFCs at Air Force Sites

Field Investigation to Characterize PFCs at Air Force Sites Cape Canaveral Air Force Station and Barksdale Air Force Base

				l	Perfluoroalk	yl Carboxy	lates								Perfluor	oalkyl Sulf	onates					
Sample ID	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	Sum	C4	C5	C6	C7	C8	C9	C10	Sum	Ratio	Ratio
	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFTrDA	PFTeDA	PFAAs	PFBS	PFPeS	PFHxS	PFHpS	PFOS	PFNS	PFDS	PFAS	A/S	S/A
6215-TW-03	2000	>3000	>3000	2000	45	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4045</td><td>15</td><td>7.7</td><td>71</td><td><loq< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td>129</td><td>31.43</td><td>0.0</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4045</td><td>15</td><td>7.7</td><td>71</td><td><loq< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td>129</td><td>31.43</td><td>0.0</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4045</td><td>15</td><td>7.7</td><td>71</td><td><loq< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td>129</td><td>31.43</td><td>0.0</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>4045</td><td>15</td><td>7.7</td><td>71</td><td><loq< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td>129</td><td>31.43</td><td>0.0</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>4045</td><td>15</td><td>7.7</td><td>71</td><td><loq< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td>129</td><td>31.43</td><td>0.0</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td>4045</td><td>15</td><td>7.7</td><td>71</td><td><loq< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td>129</td><td>31.43</td><td>0.0</td></lod<></td></lod<></td></loq<></td></lod<>	4045	15	7.7	71	<loq< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td>129</td><td>31.43</td><td>0.0</td></lod<></td></lod<></td></loq<>	35	<lod< td=""><td><lod< td=""><td>129</td><td>31.43</td><td>0.0</td></lod<></td></lod<>	<lod< td=""><td>129</td><td>31.43</td><td>0.0</td></lod<>	129	31.43	0.0
6626-TW-01	3600	15000	22000	2400	3500	190	5.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>46695</td><td>5800</td><td>4000</td><td>42000</td><td>2200</td><td>92000</td><td>580</td><td>30</td><td>146,610</td><td>0.32</td><td>3.1</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>46695</td><td>5800</td><td>4000</td><td>42000</td><td>2200</td><td>92000</td><td>580</td><td>30</td><td>146,610</td><td>0.32</td><td>3.1</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>46695</td><td>5800</td><td>4000</td><td>42000</td><td>2200</td><td>92000</td><td>580</td><td>30</td><td>146,610</td><td>0.32</td><td>3.1</td></lod<></td></lod<>	<lod< td=""><td>46695</td><td>5800</td><td>4000</td><td>42000</td><td>2200</td><td>92000</td><td>580</td><td>30</td><td>146,610</td><td>0.32</td><td>3.1</td></lod<>	46695	5800	4000	42000	2200	92000	580	30	146,610	0.32	3.1
6626-TW-02	190	420	430	110	62	6.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1218</td><td>45</td><td>47</td><td>540</td><td>25</td><td>560</td><td><lod< td=""><td><lod< td=""><td>1,217</td><td>1.00</td><td>1.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1218</td><td>45</td><td>47</td><td>540</td><td>25</td><td>560</td><td><lod< td=""><td><lod< td=""><td>1,217</td><td>1.00</td><td>1.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1218</td><td>45</td><td>47</td><td>540</td><td>25</td><td>560</td><td><lod< td=""><td><lod< td=""><td>1,217</td><td>1.00</td><td>1.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1218</td><td>45</td><td>47</td><td>540</td><td>25</td><td>560</td><td><lod< td=""><td><lod< td=""><td>1,217</td><td>1.00</td><td>1.0</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1218</td><td>45</td><td>47</td><td>540</td><td>25</td><td>560</td><td><lod< td=""><td><lod< td=""><td>1,217</td><td>1.00</td><td>1.0</td></lod<></td></lod<></td></lod<>	1218	45	47	540	25	560	<lod< td=""><td><lod< td=""><td>1,217</td><td>1.00</td><td>1.0</td></lod<></td></lod<>	<lod< td=""><td>1,217</td><td>1.00</td><td>1.0</td></lod<>	1,217	1.00	1.0
6626-TW-03	300	980	930	330	83	12	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2635</td><td>22</td><td>28.6</td><td>550</td><td>21</td><td>870</td><td><lod< td=""><td><loq< td=""><td>1,492</td><td>1.77</td><td>0.6</td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2635</td><td>22</td><td>28.6</td><td>550</td><td>21</td><td>870</td><td><lod< td=""><td><loq< td=""><td>1,492</td><td>1.77</td><td>0.6</td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2635</td><td>22</td><td>28.6</td><td>550</td><td>21</td><td>870</td><td><lod< td=""><td><loq< td=""><td>1,492</td><td>1.77</td><td>0.6</td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2635</td><td>22</td><td>28.6</td><td>550</td><td>21</td><td>870</td><td><lod< td=""><td><loq< td=""><td>1,492</td><td>1.77</td><td>0.6</td></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2635</td><td>22</td><td>28.6</td><td>550</td><td>21</td><td>870</td><td><lod< td=""><td><loq< td=""><td>1,492</td><td>1.77</td><td>0.6</td></loq<></td></lod<></td></lod<>	2635	22	28.6	550	21	870	<lod< td=""><td><loq< td=""><td>1,492</td><td>1.77</td><td>0.6</td></loq<></td></lod<>	<loq< td=""><td>1,492</td><td>1.77</td><td>0.6</td></loq<>	1,492	1.77	0.6
6626-TW-04	110	330	300	140	23	6.5	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>910</td><td>9.6</td><td>10</td><td>180</td><td>5.9</td><td>180</td><td><lod< td=""><td><lod< td=""><td>386</td><td>2.36</td><td>0.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>910</td><td>9.6</td><td>10</td><td>180</td><td>5.9</td><td>180</td><td><lod< td=""><td><lod< td=""><td>386</td><td>2.36</td><td>0.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>910</td><td>9.6</td><td>10</td><td>180</td><td>5.9</td><td>180</td><td><lod< td=""><td><lod< td=""><td>386</td><td>2.36</td><td>0.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>910</td><td>9.6</td><td>10</td><td>180</td><td>5.9</td><td>180</td><td><lod< td=""><td><lod< td=""><td>386</td><td>2.36</td><td>0.4</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>910</td><td>9.6</td><td>10</td><td>180</td><td>5.9</td><td>180</td><td><lod< td=""><td><lod< td=""><td>386</td><td>2.36</td><td>0.4</td></lod<></td></lod<></td></lod<>	910	9.6	10	180	5.9	180	<lod< td=""><td><lod< td=""><td>386</td><td>2.36</td><td>0.4</td></lod<></td></lod<>	<lod< td=""><td>386</td><td>2.36</td><td>0.4</td></lod<>	386	2.36	0.4
6626-VAP-01-50	650	2200	2600	1200	1400	300	17	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>8367</td><td>1100</td><td>1000</td><td>11000</td><td>600</td><td>35000</td><td>140</td><td>11</td><td>48,851</td><td>0.17</td><td>5.8</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>8367</td><td>1100</td><td>1000</td><td>11000</td><td>600</td><td>35000</td><td>140</td><td>11</td><td>48,851</td><td>0.17</td><td>5.8</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>8367</td><td>1100</td><td>1000</td><td>11000</td><td>600</td><td>35000</td><td>140</td><td>11</td><td>48,851</td><td>0.17</td><td>5.8</td></lod<></td></lod<>	<lod< td=""><td>8367</td><td>1100</td><td>1000</td><td>11000</td><td>600</td><td>35000</td><td>140</td><td>11</td><td>48,851</td><td>0.17</td><td>5.8</td></lod<>	8367	1100	1000	11000	600	35000	140	11	48,851	0.17	5.8
BKCM02	<lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<>	0	<lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<>	<lod< td=""><td>-</td><td>-</td><td>-</td></lod<>	-	-	-
FT02-TW-06	370	860	1900	520	630	100	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4380</td><td>1600</td><td>1500</td><td>9300</td><td>320</td><td>6600</td><td>13.4</td><td><loq< td=""><td>19,333</td><td>0.23</td><td>4.4</td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4380</td><td>1600</td><td>1500</td><td>9300</td><td>320</td><td>6600</td><td>13.4</td><td><loq< td=""><td>19,333</td><td>0.23</td><td>4.4</td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>4380</td><td>1600</td><td>1500</td><td>9300</td><td>320</td><td>6600</td><td>13.4</td><td><loq< td=""><td>19,333</td><td>0.23</td><td>4.4</td></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>4380</td><td>1600</td><td>1500</td><td>9300</td><td>320</td><td>6600</td><td>13.4</td><td><loq< td=""><td>19,333</td><td>0.23</td><td>4.4</td></loq<></td></lod<></td></lod<>	<lod< td=""><td>4380</td><td>1600</td><td>1500</td><td>9300</td><td>320</td><td>6600</td><td>13.4</td><td><loq< td=""><td>19,333</td><td>0.23</td><td>4.4</td></loq<></td></lod<>	4380	1600	1500	9300	320	6600	13.4	<loq< td=""><td>19,333</td><td>0.23</td><td>4.4</td></loq<>	19,333	0.23	4.4
FT02-TW-07	260	480	640	270	830	100	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2580</td><td>300</td><td>320</td><td>7400</td><td>680</td><td>11000</td><td>9.8</td><td><lod< td=""><td>19,710</td><td>0.13</td><td>7.6</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2580</td><td>300</td><td>320</td><td>7400</td><td>680</td><td>11000</td><td>9.8</td><td><lod< td=""><td>19,710</td><td>0.13</td><td>7.6</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2580</td><td>300</td><td>320</td><td>7400</td><td>680</td><td>11000</td><td>9.8</td><td><lod< td=""><td>19,710</td><td>0.13</td><td>7.6</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2580</td><td>300</td><td>320</td><td>7400</td><td>680</td><td>11000</td><td>9.8</td><td><lod< td=""><td>19,710</td><td>0.13</td><td>7.6</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2580</td><td>300</td><td>320</td><td>7400</td><td>680</td><td>11000</td><td>9.8</td><td><lod< td=""><td>19,710</td><td>0.13</td><td>7.6</td></lod<></td></lod<>	2580	300	320	7400	680	11000	9.8	<lod< td=""><td>19,710</td><td>0.13</td><td>7.6</td></lod<>	19,710	0.13	7.6
FT02-TW-08	41	78	100	46	28	8.7	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>302</td><td>11</td><td>8.9</td><td>180</td><td>12</td><td>350</td><td><lod< td=""><td><lod< td=""><td>562</td><td>0.54</td><td>1.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>302</td><td>11</td><td>8.9</td><td>180</td><td>12</td><td>350</td><td><lod< td=""><td><lod< td=""><td>562</td><td>0.54</td><td>1.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>302</td><td>11</td><td>8.9</td><td>180</td><td>12</td><td>350</td><td><lod< td=""><td><lod< td=""><td>562</td><td>0.54</td><td>1.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>302</td><td>11</td><td>8.9</td><td>180</td><td>12</td><td>350</td><td><lod< td=""><td><lod< td=""><td>562</td><td>0.54</td><td>1.9</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>302</td><td>11</td><td>8.9</td><td>180</td><td>12</td><td>350</td><td><lod< td=""><td><lod< td=""><td>562</td><td>0.54</td><td>1.9</td></lod<></td></lod<></td></lod<>	302	11	8.9	180	12	350	<lod< td=""><td><lod< td=""><td>562</td><td>0.54</td><td>1.9</td></lod<></td></lod<>	<lod< td=""><td>562</td><td>0.54</td><td>1.9</td></lod<>	562	0.54	1.9
FT02-TW-09	13	27	52	17	19	5.4	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>133</td><td>10</td><td>7.9</td><td>140</td><td><loq< td=""><td>420</td><td><lod< td=""><td><lod< td=""><td>578</td><td>0.23</td><td>4.3</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>133</td><td>10</td><td>7.9</td><td>140</td><td><loq< td=""><td>420</td><td><lod< td=""><td><lod< td=""><td>578</td><td>0.23</td><td>4.3</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>133</td><td>10</td><td>7.9</td><td>140</td><td><loq< td=""><td>420</td><td><lod< td=""><td><lod< td=""><td>578</td><td>0.23</td><td>4.3</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>133</td><td>10</td><td>7.9</td><td>140</td><td><loq< td=""><td>420</td><td><lod< td=""><td><lod< td=""><td>578</td><td>0.23</td><td>4.3</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td>133</td><td>10</td><td>7.9</td><td>140</td><td><loq< td=""><td>420</td><td><lod< td=""><td><lod< td=""><td>578</td><td>0.23</td><td>4.3</td></lod<></td></lod<></td></loq<></td></lod<>	133	10	7.9	140	<loq< td=""><td>420</td><td><lod< td=""><td><lod< td=""><td>578</td><td>0.23</td><td>4.3</td></lod<></td></lod<></td></loq<>	420	<lod< td=""><td><lod< td=""><td>578</td><td>0.23</td><td>4.3</td></lod<></td></lod<>	<lod< td=""><td>578</td><td>0.23</td><td>4.3</td></lod<>	578	0.23	4.3
FT02-TW-10	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5</td><td>9</td><td><lod< td=""><td>63</td><td><loq< td=""><td>60</td><td><lod< td=""><td><lod< td=""><td>132</td><td>0.04</td><td>25.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5</td><td>9</td><td><lod< td=""><td>63</td><td><loq< td=""><td>60</td><td><lod< td=""><td><lod< td=""><td>132</td><td>0.04</td><td>25.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5</td><td>9</td><td><lod< td=""><td>63</td><td><loq< td=""><td>60</td><td><lod< td=""><td><lod< td=""><td>132</td><td>0.04</td><td>25.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></loq<>	<loq< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5</td><td>9</td><td><lod< td=""><td>63</td><td><loq< td=""><td>60</td><td><lod< td=""><td><lod< td=""><td>132</td><td>0.04</td><td>25.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	5.2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5</td><td>9</td><td><lod< td=""><td>63</td><td><loq< td=""><td>60</td><td><lod< td=""><td><lod< td=""><td>132</td><td>0.04</td><td>25.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5</td><td>9</td><td><lod< td=""><td>63</td><td><loq< td=""><td>60</td><td><lod< td=""><td><lod< td=""><td>132</td><td>0.04</td><td>25.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5</td><td>9</td><td><lod< td=""><td>63</td><td><loq< td=""><td>60</td><td><lod< td=""><td><lod< td=""><td>132</td><td>0.04</td><td>25.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>5</td><td>9</td><td><lod< td=""><td>63</td><td><loq< td=""><td>60</td><td><lod< td=""><td><lod< td=""><td>132</td><td>0.04</td><td>25.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>5</td><td>9</td><td><lod< td=""><td>63</td><td><loq< td=""><td>60</td><td><lod< td=""><td><lod< td=""><td>132</td><td>0.04</td><td>25.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5</td><td>9</td><td><lod< td=""><td>63</td><td><loq< td=""><td>60</td><td><lod< td=""><td><lod< td=""><td>132</td><td>0.04</td><td>25.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<>	5	9	<lod< td=""><td>63</td><td><loq< td=""><td>60</td><td><lod< td=""><td><lod< td=""><td>132</td><td>0.04</td><td>25.4</td></lod<></td></lod<></td></loq<></td></lod<>	63	<loq< td=""><td>60</td><td><lod< td=""><td><lod< td=""><td>132</td><td>0.04</td><td>25.4</td></lod<></td></lod<></td></loq<>	60	<lod< td=""><td><lod< td=""><td>132</td><td>0.04</td><td>25.4</td></lod<></td></lod<>	<lod< td=""><td>132</td><td>0.04</td><td>25.4</td></lod<>	132	0.04	25.4
FT02-TW-11	<lod< td=""><td><loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td>5.1</td><td><lod< td=""><td>19</td><td><loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></loq<></td></lod<>	<loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td>5.1</td><td><lod< td=""><td>19</td><td><loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></loq<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td>5.1</td><td><lod< td=""><td>19</td><td><loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td>5.1</td><td><lod< td=""><td>19</td><td><loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td>5.1</td><td><lod< td=""><td>19</td><td><loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td>5.1</td><td><lod< td=""><td>19</td><td><loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td>5.1</td><td><lod< td=""><td>19</td><td><loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td>5.1</td><td><lod< td=""><td>19</td><td><loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td>5.1</td><td><lod< td=""><td>19</td><td><loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0</td><td>5.1</td><td><lod< td=""><td>19</td><td><loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0</td><td>5.1</td><td><lod< td=""><td>19</td><td><loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<>	0	5.1	<lod< td=""><td>19</td><td><loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></loq<></td></lod<>	19	<loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></loq<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td>24</td><td>-</td><td>-</td></lod<></td></lod<>	<lod< td=""><td>24</td><td>-</td><td>-</td></lod<>	24	-	-
FT02-TW-13	>3000	>3000	>3000	>3000	>3000	2500	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2500</td><td>9400</td><td>6900</td><td>6700</td><td>4300</td><td>6000</td><td>35.5</td><td><lod< td=""><td>33,336</td><td>0.07</td><td>13.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2500</td><td>9400</td><td>6900</td><td>6700</td><td>4300</td><td>6000</td><td>35.5</td><td><lod< td=""><td>33,336</td><td>0.07</td><td>13.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2500</td><td>9400</td><td>6900</td><td>6700</td><td>4300</td><td>6000</td><td>35.5</td><td><lod< td=""><td>33,336</td><td>0.07</td><td>13.3</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2500</td><td>9400</td><td>6900</td><td>6700</td><td>4300</td><td>6000</td><td>35.5</td><td><lod< td=""><td>33,336</td><td>0.07</td><td>13.3</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2500</td><td>9400</td><td>6900</td><td>6700</td><td>4300</td><td>6000</td><td>35.5</td><td><lod< td=""><td>33,336</td><td>0.07</td><td>13.3</td></lod<></td></lod<>	2500	9400	6900	6700	4300	6000	35.5	<lod< td=""><td>33,336</td><td>0.07</td><td>13.3</td></lod<>	33,336	0.07	13.3
FT02-TW-14	99	82	160	23	95	5.6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>465</td><td>140</td><td>120</td><td>2200</td><td>110</td><td>2200</td><td><lod< td=""><td><lod< td=""><td>4,770</td><td>0.10</td><td>10.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>465</td><td>140</td><td>120</td><td>2200</td><td>110</td><td>2200</td><td><lod< td=""><td><lod< td=""><td>4,770</td><td>0.10</td><td>10.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>465</td><td>140</td><td>120</td><td>2200</td><td>110</td><td>2200</td><td><lod< td=""><td><lod< td=""><td>4,770</td><td>0.10</td><td>10.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>465</td><td>140</td><td>120</td><td>2200</td><td>110</td><td>2200</td><td><lod< td=""><td><lod< td=""><td>4,770</td><td>0.10</td><td>10.3</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>465</td><td>140</td><td>120</td><td>2200</td><td>110</td><td>2200</td><td><lod< td=""><td><lod< td=""><td>4,770</td><td>0.10</td><td>10.3</td></lod<></td></lod<></td></lod<>	465	140	120	2200	110	2200	<lod< td=""><td><lod< td=""><td>4,770</td><td>0.10</td><td>10.3</td></lod<></td></lod<>	<lod< td=""><td>4,770</td><td>0.10</td><td>10.3</td></lod<>	4,770	0.10	10.3
FT02-TW-15	89	120	280	71	150	18	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>728</td><td>210</td><td>190</td><td>55000</td><td>120</td><td>1800</td><td><loq< td=""><td><lod< td=""><td>57,320</td><td>0.01</td><td>78.7</td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>728</td><td>210</td><td>190</td><td>55000</td><td>120</td><td>1800</td><td><loq< td=""><td><lod< td=""><td>57,320</td><td>0.01</td><td>78.7</td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>728</td><td>210</td><td>190</td><td>55000</td><td>120</td><td>1800</td><td><loq< td=""><td><lod< td=""><td>57,320</td><td>0.01</td><td>78.7</td></lod<></td></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>728</td><td>210</td><td>190</td><td>55000</td><td>120</td><td>1800</td><td><loq< td=""><td><lod< td=""><td>57,320</td><td>0.01</td><td>78.7</td></lod<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td>728</td><td>210</td><td>190</td><td>55000</td><td>120</td><td>1800</td><td><loq< td=""><td><lod< td=""><td>57,320</td><td>0.01</td><td>78.7</td></lod<></td></loq<></td></lod<>	728	210	190	55000	120	1800	<loq< td=""><td><lod< td=""><td>57,320</td><td>0.01</td><td>78.7</td></lod<></td></loq<>	<lod< td=""><td>57,320</td><td>0.01</td><td>78.7</td></lod<>	57,320	0.01	78.7
FT02-VAP-01-40	200	520	760	360	240	42	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2122</td><td>240</td><td>200</td><td>2700</td><td>140</td><td>6500</td><td>42.4</td><td><loq< td=""><td>9,822</td><td>0.22</td><td>4.6</td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2122</td><td>240</td><td>200</td><td>2700</td><td>140</td><td>6500</td><td>42.4</td><td><loq< td=""><td>9,822</td><td>0.22</td><td>4.6</td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2122</td><td>240</td><td>200</td><td>2700</td><td>140</td><td>6500</td><td>42.4</td><td><loq< td=""><td>9,822</td><td>0.22</td><td>4.6</td></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2122</td><td>240</td><td>200</td><td>2700</td><td>140</td><td>6500</td><td>42.4</td><td><loq< td=""><td>9,822</td><td>0.22</td><td>4.6</td></loq<></td></lod<></td></lod<>	<lod< td=""><td>2122</td><td>240</td><td>200</td><td>2700</td><td>140</td><td>6500</td><td>42.4</td><td><loq< td=""><td>9,822</td><td>0.22</td><td>4.6</td></loq<></td></lod<>	2122	240	200	2700	140	6500	42.4	<loq< td=""><td>9,822</td><td>0.22</td><td>4.6</td></loq<>	9,822	0.22	4.6
FT02-VAP-01-55	300	640	2000	250	870	11	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4071</td><td>2800</td><td>2800</td><td>15000</td><td>1500</td><td>10000</td><td><loq< td=""><td><lod< td=""><td>32,100</td><td>0.13</td><td>7.9</td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4071</td><td>2800</td><td>2800</td><td>15000</td><td>1500</td><td>10000</td><td><loq< td=""><td><lod< td=""><td>32,100</td><td>0.13</td><td>7.9</td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>4071</td><td>2800</td><td>2800</td><td>15000</td><td>1500</td><td>10000</td><td><loq< td=""><td><lod< td=""><td>32,100</td><td>0.13</td><td>7.9</td></lod<></td></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>4071</td><td>2800</td><td>2800</td><td>15000</td><td>1500</td><td>10000</td><td><loq< td=""><td><lod< td=""><td>32,100</td><td>0.13</td><td>7.9</td></lod<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td>4071</td><td>2800</td><td>2800</td><td>15000</td><td>1500</td><td>10000</td><td><loq< td=""><td><lod< td=""><td>32,100</td><td>0.13</td><td>7.9</td></lod<></td></loq<></td></lod<>	4071	2800	2800	15000	1500	10000	<loq< td=""><td><lod< td=""><td>32,100</td><td>0.13</td><td>7.9</td></lod<></td></loq<>	<lod< td=""><td>32,100</td><td>0.13</td><td>7.9</td></lod<>	32,100	0.13	7.9
FT02-VAP-02-40	290	780	660	310	190	30	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2260</td><td>340</td><td>220</td><td>2800</td><td>140</td><td>6100</td><td>16.5</td><td><lod< td=""><td>9,617</td><td>0.24</td><td>4.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2260</td><td>340</td><td>220</td><td>2800</td><td>140</td><td>6100</td><td>16.5</td><td><lod< td=""><td>9,617</td><td>0.24</td><td>4.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2260</td><td>340</td><td>220</td><td>2800</td><td>140</td><td>6100</td><td>16.5</td><td><lod< td=""><td>9,617</td><td>0.24</td><td>4.3</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2260</td><td>340</td><td>220</td><td>2800</td><td>140</td><td>6100</td><td>16.5</td><td><lod< td=""><td>9,617</td><td>0.24</td><td>4.3</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2260</td><td>340</td><td>220</td><td>2800</td><td>140</td><td>6100</td><td>16.5</td><td><lod< td=""><td>9,617</td><td>0.24</td><td>4.3</td></lod<></td></lod<>	2260	340	220	2800	140	6100	16.5	<lod< td=""><td>9,617</td><td>0.24</td><td>4.3</td></lod<>	9,617	0.24	4.3
FT02-VAP-02-50	750	2500	2900	1100	1800	410	22	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>9482</td><td>1100</td><td>1000</td><td>10000</td><td>740</td><td>35000</td><td>260</td><td>32</td><td>48,132</td><td>0.20</td><td>5.1</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>9482</td><td>1100</td><td>1000</td><td>10000</td><td>740</td><td>35000</td><td>260</td><td>32</td><td>48,132</td><td>0.20</td><td>5.1</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>9482</td><td>1100</td><td>1000</td><td>10000</td><td>740</td><td>35000</td><td>260</td><td>32</td><td>48,132</td><td>0.20</td><td>5.1</td></lod<></td></lod<>	<lod< td=""><td>9482</td><td>1100</td><td>1000</td><td>10000</td><td>740</td><td>35000</td><td>260</td><td>32</td><td>48,132</td><td>0.20</td><td>5.1</td></lod<>	9482	1100	1000	10000	740	35000	260	32	48,132	0.20	5.1
FT02-VAP-03-40	840	4000	2200	1400	1600	280	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10320</td><td>660</td><td>640</td><td>6000</td><td>500</td><td>7500</td><td>6.3</td><td><lod< td=""><td>15,306</td><td>0.67</td><td>1.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10320</td><td>660</td><td>640</td><td>6000</td><td>500</td><td>7500</td><td>6.3</td><td><lod< td=""><td>15,306</td><td>0.67</td><td>1.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>10320</td><td>660</td><td>640</td><td>6000</td><td>500</td><td>7500</td><td>6.3</td><td><lod< td=""><td>15,306</td><td>0.67</td><td>1.5</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>10320</td><td>660</td><td>640</td><td>6000</td><td>500</td><td>7500</td><td>6.3</td><td><lod< td=""><td>15,306</td><td>0.67</td><td>1.5</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10320</td><td>660</td><td>640</td><td>6000</td><td>500</td><td>7500</td><td>6.3</td><td><lod< td=""><td>15,306</td><td>0.67</td><td>1.5</td></lod<></td></lod<>	10320	660	640	6000	500	7500	6.3	<lod< td=""><td>15,306</td><td>0.67</td><td>1.5</td></lod<>	15,306	0.67	1.5
FT02-VAP-03-50	520	2000	1500	1200	1200	390	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6810</td><td>230</td><td>230</td><td>2600</td><td>240</td><td>14000</td><td>45.3</td><td><lod< td=""><td>17,345</td><td>0.39</td><td>2.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6810</td><td>230</td><td>230</td><td>2600</td><td>240</td><td>14000</td><td>45.3</td><td><lod< td=""><td>17,345</td><td>0.39</td><td>2.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>6810</td><td>230</td><td>230</td><td>2600</td><td>240</td><td>14000</td><td>45.3</td><td><lod< td=""><td>17,345</td><td>0.39</td><td>2.5</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>6810</td><td>230</td><td>230</td><td>2600</td><td>240</td><td>14000</td><td>45.3</td><td><lod< td=""><td>17,345</td><td>0.39</td><td>2.5</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6810</td><td>230</td><td>230</td><td>2600</td><td>240</td><td>14000</td><td>45.3</td><td><lod< td=""><td>17,345</td><td>0.39</td><td>2.5</td></lod<></td></lod<>	6810	230	230	2600	240	14000	45.3	<lod< td=""><td>17,345</td><td>0.39</td><td>2.5</td></lod<>	17,345	0.39	2.5
FT02-VAP-04-40	190	480	930	190	260	32	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2082</td><td>650</td><td>500</td><td>2500</td><td>190</td><td>2400</td><td><lod< td=""><td><lod< td=""><td>6,240</td><td>0.33</td><td>3.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2082</td><td>650</td><td>500</td><td>2500</td><td>190</td><td>2400</td><td><lod< td=""><td><lod< td=""><td>6,240</td><td>0.33</td><td>3.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2082</td><td>650</td><td>500</td><td>2500</td><td>190</td><td>2400</td><td><lod< td=""><td><lod< td=""><td>6,240</td><td>0.33</td><td>3.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2082</td><td>650</td><td>500</td><td>2500</td><td>190</td><td>2400</td><td><lod< td=""><td><lod< td=""><td>6,240</td><td>0.33</td><td>3.0</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2082</td><td>650</td><td>500</td><td>2500</td><td>190</td><td>2400</td><td><lod< td=""><td><lod< td=""><td>6,240</td><td>0.33</td><td>3.0</td></lod<></td></lod<></td></lod<>	2082	650	500	2500	190	2400	<lod< td=""><td><lod< td=""><td>6,240</td><td>0.33</td><td>3.0</td></lod<></td></lod<>	<lod< td=""><td>6,240</td><td>0.33</td><td>3.0</td></lod<>	6,240	0.33	3.0
FT02-VAP-04-50	240	510	850	180	360	25	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2165</td><td>640</td><td>460</td><td>9900</td><td>160</td><td>1900</td><td><lod< td=""><td><lod< td=""><td>13,060</td><td>0.17</td><td>6.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2165</td><td>640</td><td>460</td><td>9900</td><td>160</td><td>1900</td><td><lod< td=""><td><lod< td=""><td>13,060</td><td>0.17</td><td>6.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2165</td><td>640</td><td>460</td><td>9900</td><td>160</td><td>1900</td><td><lod< td=""><td><lod< td=""><td>13,060</td><td>0.17</td><td>6.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2165</td><td>640</td><td>460</td><td>9900</td><td>160</td><td>1900</td><td><lod< td=""><td><lod< td=""><td>13,060</td><td>0.17</td><td>6.0</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2165</td><td>640</td><td>460</td><td>9900</td><td>160</td><td>1900</td><td><lod< td=""><td><lod< td=""><td>13,060</td><td>0.17</td><td>6.0</td></lod<></td></lod<></td></lod<>	2165	640	460	9900	160	1900	<lod< td=""><td><lod< td=""><td>13,060</td><td>0.17</td><td>6.0</td></lod<></td></lod<>	<lod< td=""><td>13,060</td><td>0.17</td><td>6.0</td></lod<>	13,060	0.17	6.0
FT02-VAP-05-50	86	170	240	120	91	5.6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>713</td><td>120</td><td>93</td><td>900</td><td>17</td><td>200</td><td><lod< td=""><td><lod< td=""><td>1,330</td><td>0.54</td><td>1.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>713</td><td>120</td><td>93</td><td>900</td><td>17</td><td>200</td><td><lod< td=""><td><lod< td=""><td>1,330</td><td>0.54</td><td>1.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>713</td><td>120</td><td>93</td><td>900</td><td>17</td><td>200</td><td><lod< td=""><td><lod< td=""><td>1,330</td><td>0.54</td><td>1.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>713</td><td>120</td><td>93</td><td>900</td><td>17</td><td>200</td><td><lod< td=""><td><lod< td=""><td>1,330</td><td>0.54</td><td>1.9</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>713</td><td>120</td><td>93</td><td>900</td><td>17</td><td>200</td><td><lod< td=""><td><lod< td=""><td>1,330</td><td>0.54</td><td>1.9</td></lod<></td></lod<></td></lod<>	713	120	93	900	17	200	<lod< td=""><td><lod< td=""><td>1,330</td><td>0.54</td><td>1.9</td></lod<></td></lod<>	<lod< td=""><td>1,330</td><td>0.54</td><td>1.9</td></lod<>	1,330	0.54	1.9
FT02-VAP-06-40	<loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<>	0	<lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<>	<lod< td=""><td>-</td><td>-</td><td>-</td></lod<>	-	-	-
FT02-VAP-06-50	14	23	34	7.5	13	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>92</td><td>16</td><td>13</td><td>150</td><td><lod< td=""><td>130</td><td><lod< td=""><td><lod< td=""><td>309</td><td>0.30</td><td>3.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>92</td><td>16</td><td>13</td><td>150</td><td><lod< td=""><td>130</td><td><lod< td=""><td><lod< td=""><td>309</td><td>0.30</td><td>3.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>92</td><td>16</td><td>13</td><td>150</td><td><lod< td=""><td>130</td><td><lod< td=""><td><lod< td=""><td>309</td><td>0.30</td><td>3.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>92</td><td>16</td><td>13</td><td>150</td><td><lod< td=""><td>130</td><td><lod< td=""><td><lod< td=""><td>309</td><td>0.30</td><td>3.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>92</td><td>16</td><td>13</td><td>150</td><td><lod< td=""><td>130</td><td><lod< td=""><td><lod< td=""><td>309</td><td>0.30</td><td>3.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>92</td><td>16</td><td>13</td><td>150</td><td><lod< td=""><td>130</td><td><lod< td=""><td><lod< td=""><td>309</td><td>0.30</td><td>3.4</td></lod<></td></lod<></td></lod<></td></lod<>	92	16	13	150	<lod< td=""><td>130</td><td><lod< td=""><td><lod< td=""><td>309</td><td>0.30</td><td>3.4</td></lod<></td></lod<></td></lod<>	130	<lod< td=""><td><lod< td=""><td>309</td><td>0.30</td><td>3.4</td></lod<></td></lod<>	<lod< td=""><td>309</td><td>0.30</td><td>3.4</td></lod<>	309	0.30	3.4
FT02-VAP-07-42	<loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></loq<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0</td><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<>	0	<lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td><loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<></td></loq<>	<lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td>-</td><td>-</td><td>-</td></lod<></td></lod<>	<lod< td=""><td>-</td><td>-</td><td>-</td></lod<>	-	-	-
FT02-VAP-07-52	<loq< td=""><td>17</td><td>24</td><td><loq< td=""><td>6.6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td><td>15</td><td>10</td><td>96</td><td><loq< td=""><td>42</td><td><lod< td=""><td><lod< td=""><td>163</td><td>0.29</td><td>3.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></loq<>	17	24	<loq< td=""><td>6.6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td><td>15</td><td>10</td><td>96</td><td><loq< td=""><td>42</td><td><lod< td=""><td><lod< td=""><td>163</td><td>0.29</td><td>3.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	6.6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td><td>15</td><td>10</td><td>96</td><td><loq< td=""><td>42</td><td><lod< td=""><td><lod< td=""><td>163</td><td>0.29</td><td>3.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td><td>15</td><td>10</td><td>96</td><td><loq< td=""><td>42</td><td><lod< td=""><td><lod< td=""><td>163</td><td>0.29</td><td>3.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td><td>15</td><td>10</td><td>96</td><td><loq< td=""><td>42</td><td><lod< td=""><td><lod< td=""><td>163</td><td>0.29</td><td>3.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td><td>15</td><td>10</td><td>96</td><td><loq< td=""><td>42</td><td><lod< td=""><td><lod< td=""><td>163</td><td>0.29</td><td>3.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>48</td><td>15</td><td>10</td><td>96</td><td><loq< td=""><td>42</td><td><lod< td=""><td><lod< td=""><td>163</td><td>0.29</td><td>3.4</td></lod<></td></lod<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td>48</td><td>15</td><td>10</td><td>96</td><td><loq< td=""><td>42</td><td><lod< td=""><td><lod< td=""><td>163</td><td>0.29</td><td>3.4</td></lod<></td></lod<></td></loq<></td></lod<>	48	15	10	96	<loq< td=""><td>42</td><td><lod< td=""><td><lod< td=""><td>163</td><td>0.29</td><td>3.4</td></lod<></td></lod<></td></loq<>	42	<lod< td=""><td><lod< td=""><td>163</td><td>0.29</td><td>3.4</td></lod<></td></lod<>	<lod< td=""><td>163</td><td>0.29</td><td>3.4</td></lod<>	163	0.29	3.4
FT02-VAP-08-45	<loq< td=""><td>14</td><td>11</td><td><loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td><td><loq< td=""><td><loq< td=""><td>53</td><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td>67</td><td>0.37</td><td>2.7</td></lod<></td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></loq<></td></loq<>	14	11	<loq< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td><td><loq< td=""><td><loq< td=""><td>53</td><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td>67</td><td>0.37</td><td>2.7</td></lod<></td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></loq<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td><td><loq< td=""><td><loq< td=""><td>53</td><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td>67</td><td>0.37</td><td>2.7</td></lod<></td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td><td><loq< td=""><td><loq< td=""><td>53</td><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td>67</td><td>0.37</td><td>2.7</td></lod<></td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td><td><loq< td=""><td><loq< td=""><td>53</td><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td>67</td><td>0.37</td><td>2.7</td></lod<></td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td><td><loq< td=""><td><loq< td=""><td>53</td><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td>67</td><td>0.37</td><td>2.7</td></lod<></td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td><td><loq< td=""><td><loq< td=""><td>53</td><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td>67</td><td>0.37</td><td>2.7</td></lod<></td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>25</td><td><loq< td=""><td><loq< td=""><td>53</td><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td>67</td><td>0.37</td><td>2.7</td></lod<></td></lod<></td></lod<></td></loq<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td>25</td><td><loq< td=""><td><loq< td=""><td>53</td><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td>67</td><td>0.37</td><td>2.7</td></lod<></td></lod<></td></lod<></td></loq<></td></loq<></td></lod<>	25	<loq< td=""><td><loq< td=""><td>53</td><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td>67</td><td>0.37</td><td>2.7</td></lod<></td></lod<></td></lod<></td></loq<></td></loq<>	<loq< td=""><td>53</td><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td>67</td><td>0.37</td><td>2.7</td></lod<></td></lod<></td></lod<></td></loq<>	53	<lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td>67</td><td>0.37</td><td>2.7</td></lod<></td></lod<></td></lod<>	14	<lod< td=""><td><lod< td=""><td>67</td><td>0.37</td><td>2.7</td></lod<></td></lod<>	<lod< td=""><td>67</td><td>0.37</td><td>2.7</td></lod<>	67	0.37	2.7
FT02-VAP-08-55	29	48	80	24	29	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>210</td><td>43</td><td>35</td><td>300</td><td>6.9</td><td>130</td><td><lod< td=""><td><lod< td=""><td>515</td><td>0.41</td><td>2.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>210</td><td>43</td><td>35</td><td>300</td><td>6.9</td><td>130</td><td><lod< td=""><td><lod< td=""><td>515</td><td>0.41</td><td>2.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>210</td><td>43</td><td>35</td><td>300</td><td>6.9</td><td>130</td><td><lod< td=""><td><lod< td=""><td>515</td><td>0.41</td><td>2.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>210</td><td>43</td><td>35</td><td>300</td><td>6.9</td><td>130</td><td><lod< td=""><td><lod< td=""><td>515</td><td>0.41</td><td>2.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>210</td><td>43</td><td>35</td><td>300</td><td>6.9</td><td>130</td><td><lod< td=""><td><lod< td=""><td>515</td><td>0.41</td><td>2.5</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>210</td><td>43</td><td>35</td><td>300</td><td>6.9</td><td>130</td><td><lod< td=""><td><lod< td=""><td>515</td><td>0.41</td><td>2.5</td></lod<></td></lod<></td></lod<>	210	43	35	300	6.9	130	<lod< td=""><td><lod< td=""><td>515</td><td>0.41</td><td>2.5</td></lod<></td></lod<>	<lod< td=""><td>515</td><td>0.41</td><td>2.5</td></lod<>	515	0.41	2.5
FT02-VAP-09-45	74	200	340	98	110	12	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>834</td><td>160</td><td>120</td><td>1100</td><td>58</td><td>620</td><td><lod< td=""><td><lod< td=""><td>2,058</td><td>0.41</td><td>2.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>834</td><td>160</td><td>120</td><td>1100</td><td>58</td><td>620</td><td><lod< td=""><td><lod< td=""><td>2,058</td><td>0.41</td><td>2.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>834</td><td>160</td><td>120</td><td>1100</td><td>58</td><td>620</td><td><lod< td=""><td><lod< td=""><td>2,058</td><td>0.41</td><td>2.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>834</td><td>160</td><td>120</td><td>1100</td><td>58</td><td>620</td><td><lod< td=""><td><lod< td=""><td>2,058</td><td>0.41</td><td>2.5</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>834</td><td>160</td><td>120</td><td>1100</td><td>58</td><td>620</td><td><lod< td=""><td><lod< td=""><td>2,058</td><td>0.41</td><td>2.5</td></lod<></td></lod<></td></lod<>	834	160	120	1100	58	620	<lod< td=""><td><lod< td=""><td>2,058</td><td>0.41</td><td>2.5</td></lod<></td></lod<>	<lod< td=""><td>2,058</td><td>0.41</td><td>2.5</td></lod<>	2,058	0.41	2.5
FT02-VAP-09-55	1700	4000	10000	1600	3500	150	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20950</td><td>7300</td><td>5300</td><td>27000</td><td>1700</td><td>23000</td><td>38</td><td><lod< td=""><td>64,338</td><td>0.33</td><td>3.1</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20950</td><td>7300</td><td>5300</td><td>27000</td><td>1700</td><td>23000</td><td>38</td><td><lod< td=""><td>64,338</td><td>0.33</td><td>3.1</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20950</td><td>7300</td><td>5300</td><td>27000</td><td>1700</td><td>23000</td><td>38</td><td><lod< td=""><td>64,338</td><td>0.33</td><td>3.1</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20950</td><td>7300</td><td>5300</td><td>27000</td><td>1700</td><td>23000</td><td>38</td><td><lod< td=""><td>64,338</td><td>0.33</td><td>3.1</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>20950</td><td>7300</td><td>5300</td><td>27000</td><td>1700</td><td>23000</td><td>38</td><td><lod< td=""><td>64,338</td><td>0.33</td><td>3.1</td></lod<></td></lod<>	20950	7300	5300	27000	1700	23000	38	<lod< td=""><td>64,338</td><td>0.33</td><td>3.1</td></lod<>	64,338	0.33	3.1
Limit of Quantitation (LOQ)	10	10	10	5	5	5	5	5	5	5	10		5	5	5	10	5	5	5			
Limit of Detection (LOD)	4.1	1.1	1.4	1.8	1.5	1.0	0.94	0.93	1.0	1.2	1.7		1.2	1.7	1.7	0.88	0.81	0.81	0.71			
QC Results																						
Solvent Spike 30 ng/L	28	30	29	30	25	29	27	30	26	30	29		30	N/A	29	30	28	N/A	25			
Solvent Spike 100 ng/L	95	87	95	104	89	92	96	88	97	98	89		91	N/A	94	91	93	N/A	88			
Extraction Blank	<lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td></td></lod<>			
Solvent Blank	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td></td></lod<>			
Linearity (R ²)^	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99		0.99	N/A	0.99	0.99	0.99	N/A	0.99			

Table 15 **BAFB Analytical Results - AFFF Constituents in Groundwater** Field Investigation to Characterize PFCs at Air Force Sites

Cape Canaveral Air Force Station and Barksdale Air Force Base

	Fluoro	telomer Sul	fonates	Perfluoroalkyl Sulfonamido Amines					Perfluoroalkyl S	Sulfonamide Ami	ino Carboxylates	5	Fluorotelo	mer Thioamido	Sulfonates	
Sample ID	4:2 FtS	6:2 FtS	8:2 FtS	C4	C5	C6	C7	C8	C4	C5	C6	C7	C8			
				PFBSaAm	PFPeSaA m	PFHxSaAm	PFHpSaAm	PFOSaAm	PFBSaAmA	PFPeSaAmA	PFHxSaAmA	PFHpSaAmA	PFOSaAmA	4-2 FtTAoS	6-2 FtTAoS	8-2 FtTAoS
0045 TW 00		1.100		4.00					4.00		1.00		4.00			
6215-TW-03	<lod< td=""><td>1400</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1400	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
6626-TW-01	71	130000	410	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
6626-TW-02	<lod< td=""><td>60</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	60	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
6626-TW-03	<lod< td=""><td>620</td><td>23</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	620	23	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
6626-TW-04	<lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
6626-VAP-01-50	120	1950	1400	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
BKCM02	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-TW-06	<lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-TW-07	<lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-TW-08	<lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-TW-09	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-TW-10	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-TW-11	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-TW-13	52	3900	107	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-TW-14	<lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-TW-15	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-01-40	11	450	410	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-01-55	7.6	480	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-02-40	<lod< td=""><td>560</td><td>220</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	560	220	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-02-50	140	2700	1300	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-03-40	81	2300	100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-03-50	55	1900	580	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-04-40	52	1400	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-04-50	58	1300	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-05-50	<lod< td=""><td>76</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	76	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-06-40	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-06-50	<lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-07-42	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-07-52	<lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-08-45	<lod< td=""><td><loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-08-55	<lod< td=""><td>21</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	21	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-09-45	14.7	460	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
FT02-VAP-09-55	78	2766	364	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Limit of Quantitation (LOQ)	5	10	10	5	5	5	5	5	5	5	5	5	5	5	5	5
Limit of Detection (LOD)	1.6	0.84	1.9	Ŭ	, j	Ŭ	Ŭ	Ŭ		J	, j	, j	Ŭ	Ŭ	Ŭ	Ŭ
QC Results																
Solvent Spike 30 ng/L	37	32	32	N/A, uses PFO	S cal curve				N/A, uses PFO	S cal curve				N/A	30	N/A
Solvent Spike 30 ng/L	99	103	84	1973, 0303 1 1 0										N/A	100	N/A
Extraction Blank	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Solvent Blank	<lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod 	<lod <lod< td=""></lod<></lod
Linearity (R ²)^	0.99	0.99	0.99	N/A, uses PFO	S cal curve				N/A, uses PFO	S cal curve				N/A	0.99	N/A

*Did not pass ^Ranged from 5-3000 ng/L. 1/x weighted.

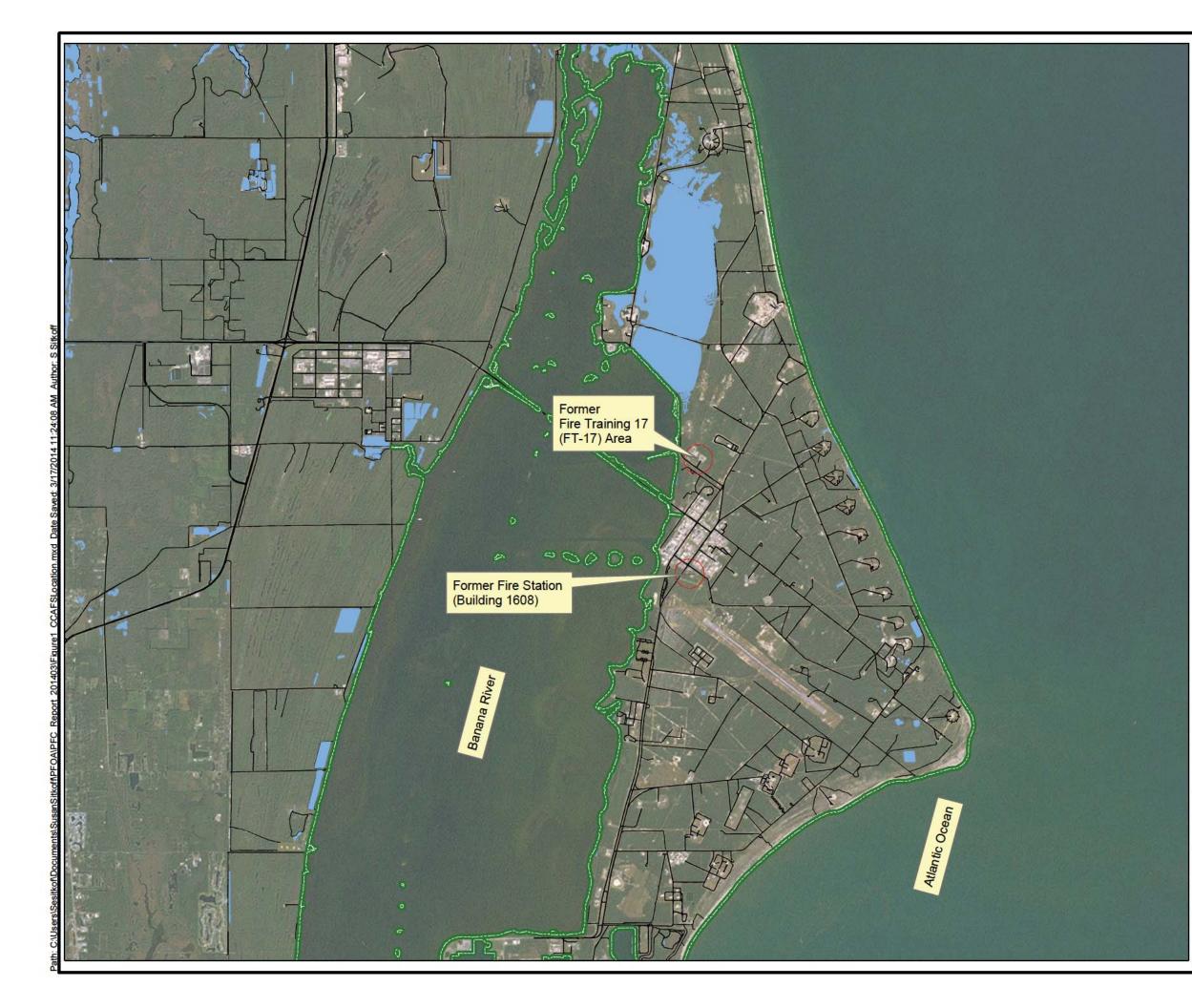
Table 15 BAFB Analytical Results - AFFF Constituents in Groundwater Field Investigation to Characterize PFCs at Air Force Sites

Cape Canaveral Air Force Station and Barksdale Air Force Base

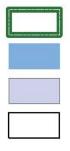
	Fluorotelomer Thio Hydroxy Ammonium	Fluoro	otelomer Sul	fonamido Bet	aines	Fluorotelomer	Sulfamido Amines		Fluoro	otelomer Betai	nes			
Sample ID	6-2 FtTHN	6-2 FtSaB	8-2 FtSaB	10-2 FtSaB	12-2 FtSaB	6-2 FtSaAm	8-2 FtSaAm	5-1-2 FtB	7-1-2 FtB	9-1-2 FtB	5-3 FtB	7-3 FtB	9-3 FtB	
		1.00			1.00		1.05	1.05		1.05	1.05			
6215-TW-03	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Notes</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td>Notes</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Notes</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Notes</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Notes</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Notes</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Notes</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Notes</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Notes</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Notes</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>Notes</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Notes</td></lod<></td></lod<>	<lod< td=""><td>Notes</td></lod<>	Notes
6626-TW-01	<lod< td=""><td><lod< td=""><td>All units an</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>All units an</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>All units an</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>All units an</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>All units an</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>All units an</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>All units an</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>All units an</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>All units an</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>All units an</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>All units an</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>All units an</td></lod<></td></lod<>	<lod< td=""><td>All units an</td></lod<>	All units an
6626-TW-02	<lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<>	<lod< td=""><td>Solvent sp</td></lod<>	Solvent sp
6626-TW-03	<lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Solvent sp</td></lod<></td></lod<>	<lod< td=""><td>Solvent sp</td></lod<>	Solvent sp
6626-TW-04	<loq <lod< td=""><td><lod <lod< td=""><td>Extraction Solvent bla</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></loq 	<lod <lod< td=""><td><lod <lod< td=""><td>Extraction Solvent bla</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>Extraction Solvent bla</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>Extraction Solvent bla</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>Extraction Solvent bla</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>Extraction Solvent bla</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>Extraction Solvent bla</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>Extraction Solvent bla</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>Extraction Solvent bla</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>Extraction Solvent bla</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>Extraction Solvent bla</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>Extraction Solvent bla</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>Extraction Solvent bla</td></lod<></lod 	Extraction Solvent bla
6626-VAP-01-50					_									
BKCM02	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Linearity (</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td>Linearity (</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Linearity (</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Linearity (</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Linearity (</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Linearity (</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Linearity (</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Linearity (</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Linearity (</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Linearity (</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>Linearity (</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Linearity (</td></lod<></td></lod<>	<lod< td=""><td>Linearity (</td></lod<>	Linearity (
FT02-TW-06	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>non-bolde Bold = Ta</td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>non-bolde Bold = Ta</td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<>	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>non-bolde Bold = Ta</td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>non-bolde Bold = Ta</td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>non-bolde Bold = Ta</td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>non-bolde Bold = Ta</td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>non-bolde Bold = Ta</td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<>	<lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>non-bolde Bold = Ta</td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>non-bolde Bold = Ta</td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>non-bolde Bold = Ta</td></lod<></td></lod<></lod </td></lod<></td></lod<>	<lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>non-bolde Bold = Ta</td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod< td=""><td>non-bolde Bold = Ta</td></lod<></td></lod<></lod 	<lod< td=""><td>non-bolde Bold = Ta</td></lod<>	non-bolde Bold = Ta
FT02-TW-07 FT02-TW-08	<lod <lod< td=""><td><lod <lod< td=""><td><lod n<="" td=""></lod></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod n<="" td=""></lod></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod n<="" td=""></lod></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod n<="" td=""></lod></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod n<="" td=""></lod></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod n<="" td=""></lod></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod n<="" td=""></lod></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod n<="" td=""></lod></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod n<="" td=""></lod></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod n<="" td=""></lod></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod n<="" td=""></lod></td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod n<="" td=""></lod></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod n<="" td=""></lod></td></lod<></lod 	<lod n<="" td=""></lod>
FT02-TW-08	<lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><loq b<="" td=""></loq></td></lod<></td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod 	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><loq b<="" td=""></loq></td></lod<></td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><loq b<="" td=""></loq></td></lod<></td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><loq b<="" td=""></loq></td></lod<></td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod 	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><loq b<="" td=""></loq></td></lod<></td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><loq b<="" td=""></loq></td></lod<></td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><loq b<="" td=""></loq></td></lod<></td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod 	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><loq b<="" td=""></loq></td></lod<></td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><loq b<="" td=""></loq></td></lod<></td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><loq b<="" td=""></loq></td></lod<></td></lod<></lod </td></lod<></td></lod<></lod 	<lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><loq b<="" td=""></loq></td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod< td=""><td><loq b<="" td=""></loq></td></lod<></td></lod<></lod 	<lod< td=""><td><loq b<="" td=""></loq></td></lod<>	<loq b<="" td=""></loq>
FT02-TW-10	<lod< td=""><td><lod< td=""><td>Calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Calibration</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>Calibration</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Calibration</td></lod<></td></lod<>	<lod< td=""><td>Calibration</td></lod<>	Calibration
FT02-TW-11	<lod< td=""><td><lod< td=""><td>(calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>(calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>(calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>(calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>(calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>(calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>(calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>(calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>(calibration</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>(calibration</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>(calibration</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>(calibration</td></lod<></td></lod<>	<lod< td=""><td>(calibration</td></lod<>	(calibration
FT02-TW-13	<lod< td=""><td><lod< td=""><td>curve from</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>curve from</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>curve from</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>curve from</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>curve from</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>curve from</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>curve from</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>curve from</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>curve from</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>curve from</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>curve from</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>curve from</td></lod<></td></lod<>	<lod< td=""><td>curve from</td></lod<>	curve from
FT02-TW-14	<lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>>3,000 inc</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>>3,000 inc</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>>3,000 inc</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>>3,000 inc</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<>	<lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>>3,000 inc</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>>3,000 inc</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>>3,000 inc</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<>	<lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>>3,000 inc</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>>3,000 inc</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>>3,000 inc</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>>3,000 inc</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>>3,000 inc</td></lod<></td></lod<>	<lod< td=""><td>>3,000 inc</td></lod<>	>3,000 inc
FT02-TW-15	<lod< td=""><td><lod< td=""><td>so discrete</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>so discrete</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>so discrete</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>so discrete</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>so discrete</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>so discrete</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>so discrete</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>so discrete</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>so discrete</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>so discrete</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>so discrete</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>so discrete</td></lod<></td></lod<>	<lod< td=""><td>so discrete</td></lod<>	so discrete
FT02-VAP-01-40	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-01-55	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-02-40	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-02-50	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-03-40	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-03-50	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-04-40	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-04-50	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-05-50	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-06-40	<loq< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></loq<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-06-50	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-07-42	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-07-52	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-08-45	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-08-55	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
FT02-VAP-09-45 FT02-VAP-09-55	<lod <lod< td=""><td><lod <lod< td=""><td></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td></td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td></td></lod<></lod 	
Limit of Quantitation (LOQ) Limit of Detection (LOD)	21.0	50	50	50	50	41	41	9.6	20	5.3	2.7	5	10	
QC Results														
Solvent Spike 30 ng/L	31*	330	N/A	N/A	N/A	200	N/A	96	97	84	57*	79	59*	
Solvent Spike 100 ng/L	120	690*	N/A	N/A	N/A	510*	N/A	65*	65*	70	52*	61*	69*	
Extraction Blank	21*	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
Solvent Blank	6.8*	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
Linearity (R ²)^	0.99	0.99	N/A	N/A	N/A	0.99	N/A	0.98	0.97	0.99	0.99	0.99	0.99	

* = not within acceptance range

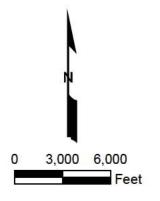
50-30000 ng/L


are in nanograms per liter, ng/L

- spike 30 ng/L QC based on n = 3, acceptance limit 21-39 ng/L
- spike 100 ng/L QC is based on n = 3, acceptance limit 70-130 ng/L
- on blank QC is based on n = 1, < LOD
- blank QC is based on n = 3, < LOD
- r (R²) is based on 6 points, R2 > 0.97
- ded = data taken from undiluted


Faken from diluted data

- no signal, signal below calibration curve calculation range
- below lowest cal bration curve point
- ion curves from 5-3000 ng/L for all compounds except 6:2 FtTHN
- tion curve from 7.5- 4500 ng/L) and 6-2 FtSaAm and 8-2 FtSaAm (calibration
- om 40 24,300 ng/L)
- ndicates data from undiluted was beyond calibration, second run diluted failed ete value not reported



Base Boundary

Surface Water

Building

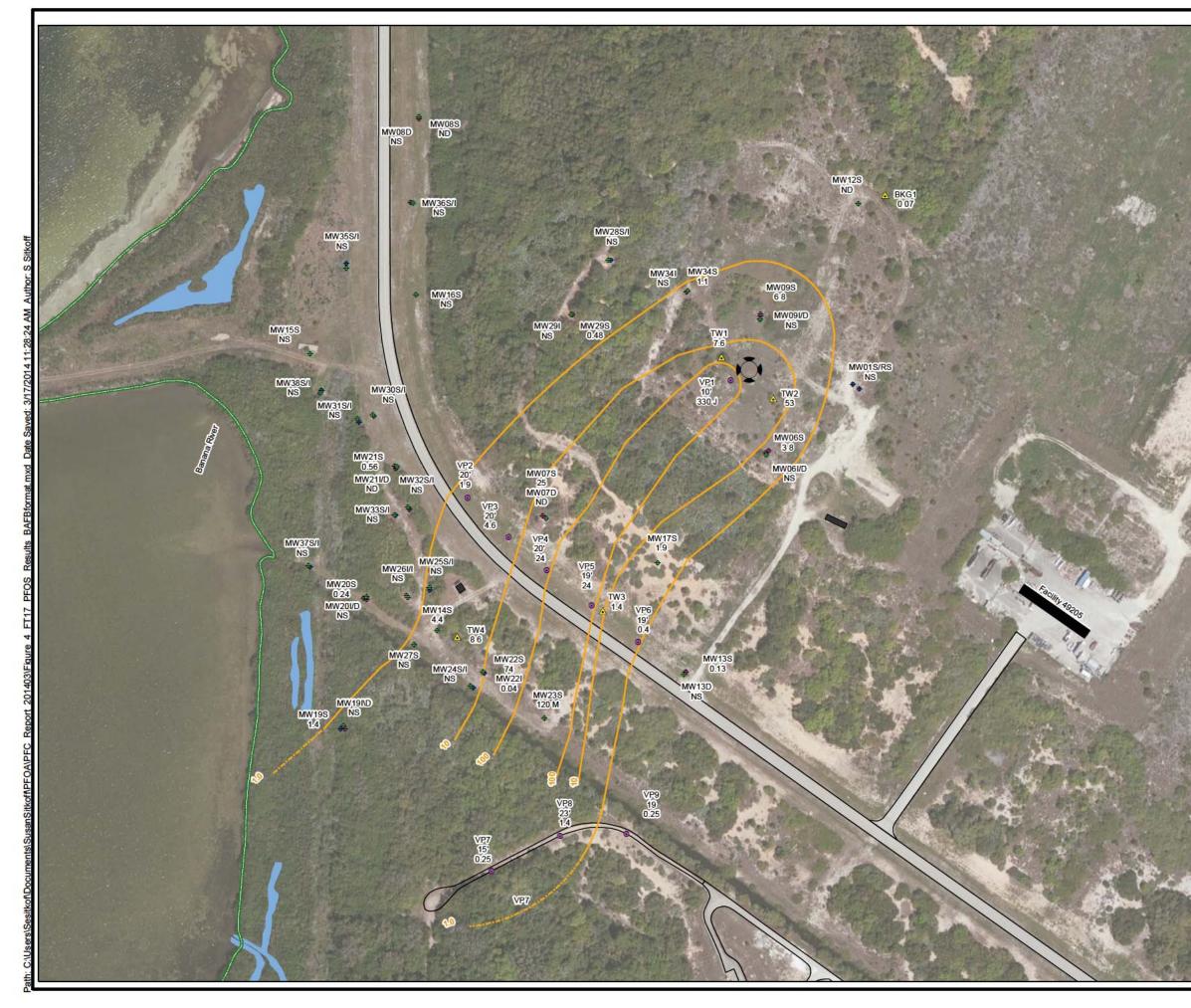
Pavement

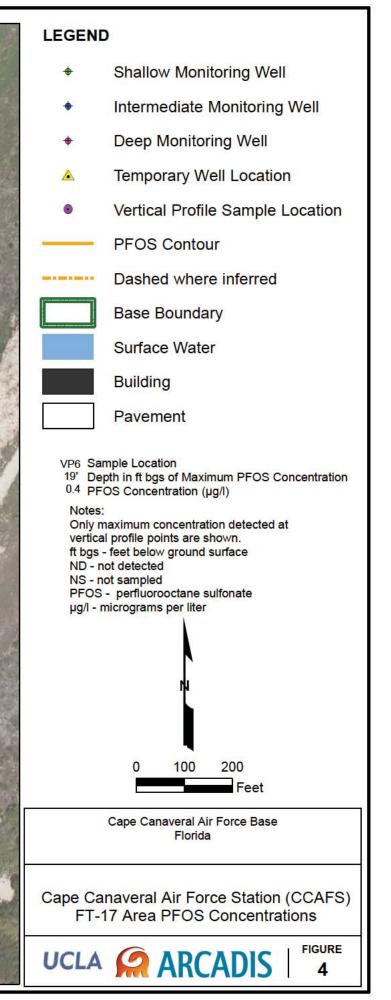
Cape Canaveral Air Force Base Florida

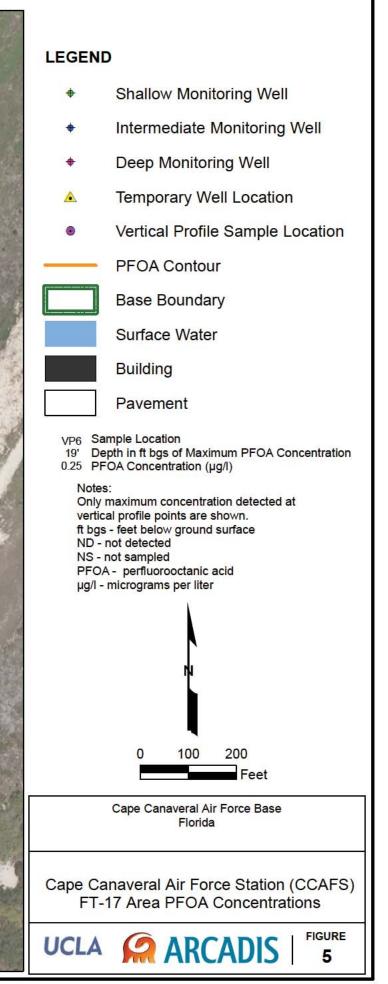
Cape Canaveral Air Force Station (CCAFS) Sitewide Map

UCLA 🧖 ARCADIS

FIGURE


*




UCLA ARCADIS 2

**

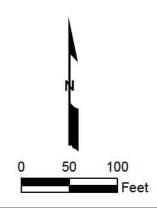
Intermediate Monitoring Well ٠

Temporary Well Location

Vertical Profile Sample Location

•

Base Boundary


Surface Water

Building

Pavement

MWS08 Sample Location 11 / 10 PFOS / PFOA Concentration (µg/L)

Notes: Only maximum concentration detected at vertical profile points are shown. ft bgs - feet below ground surface ND - not detected NS - not sampled PFOA - perfluorooctanic acid PFOS - perfluorooctane sulfonate µg/l - micrograms per liter

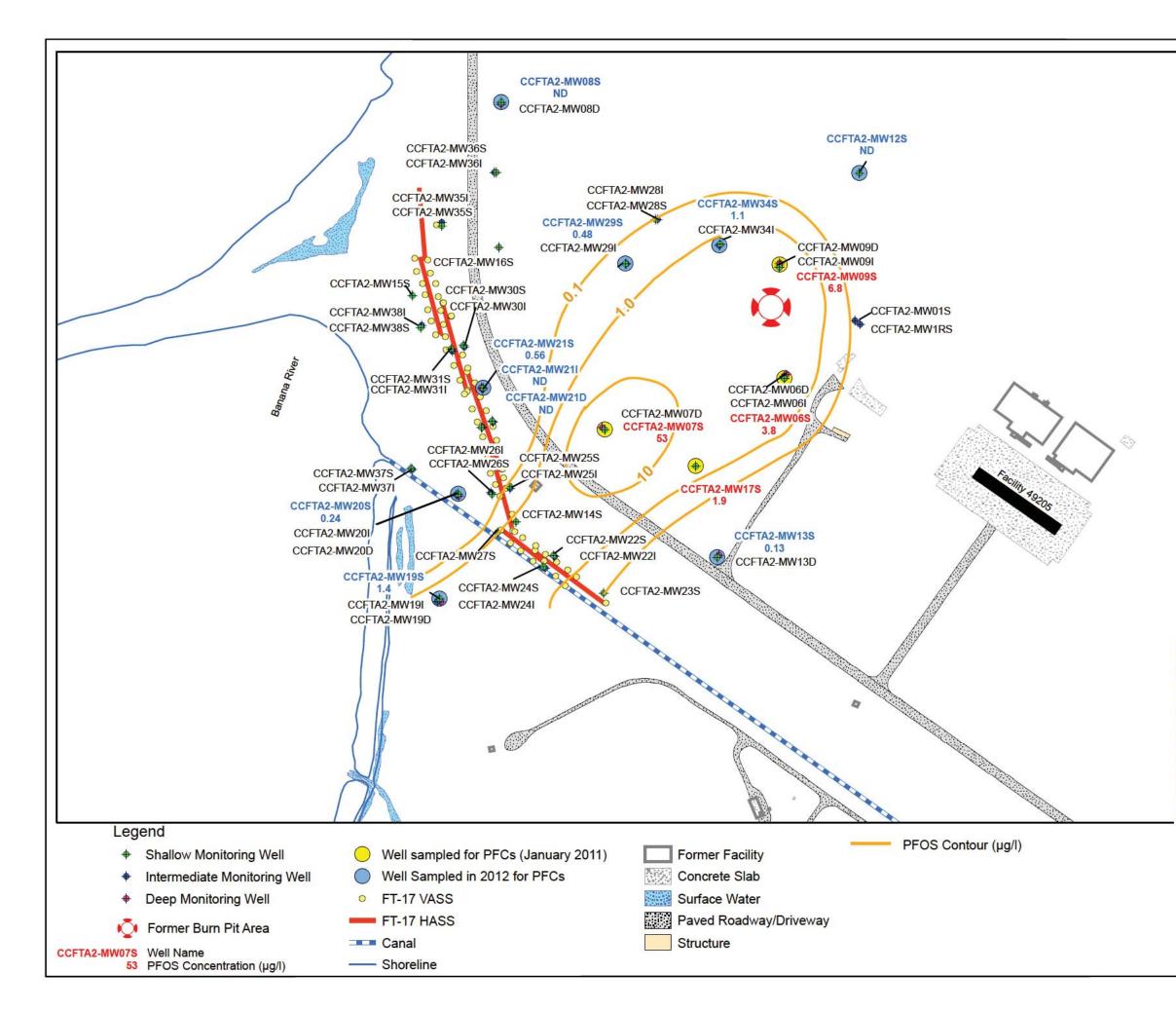
Cape Canaveral Air Force Base Florida

Cape Canaveral Air Force Station (CCAFS) Fire Station PFOS and PFOA Concentrations

Appendix E

Field Sampling Plans

Imagine the result

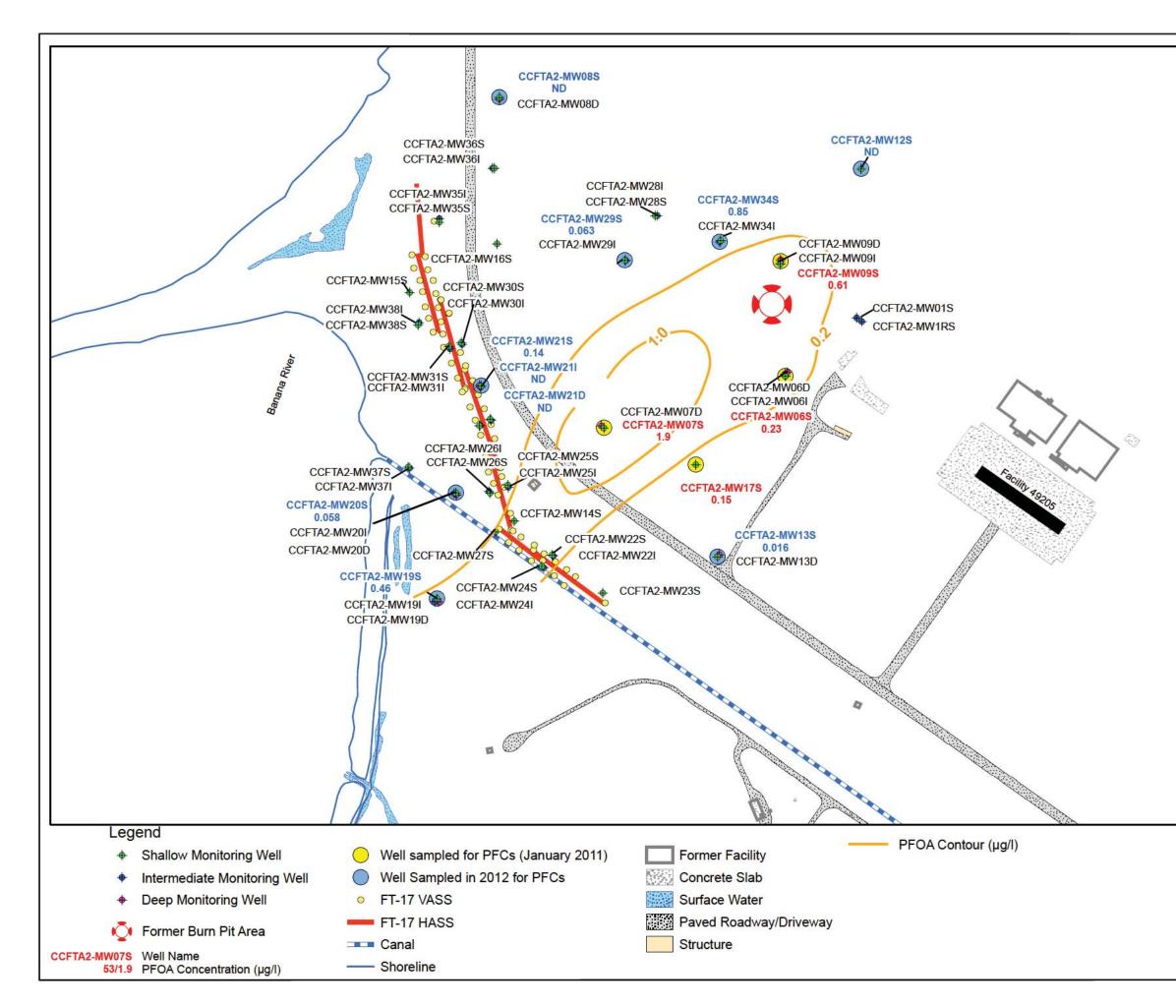

Field Sampling Plan for the Assessment of Perfluorinated Compounds

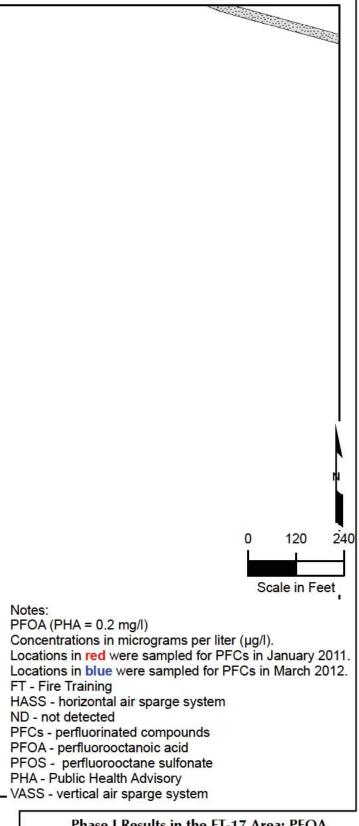
Addendum 1: Phase II Sampling Plan, Cape Canaveral Air Force Station, Florida

Cape Canaveral Air Force Station, Florida Barksdale Air Force Base, Louisiana Robins Air Force Base, Georgia Beale Air Force Base, California

August 30, 2012

ARCADIS MALCOLM PIRNIE

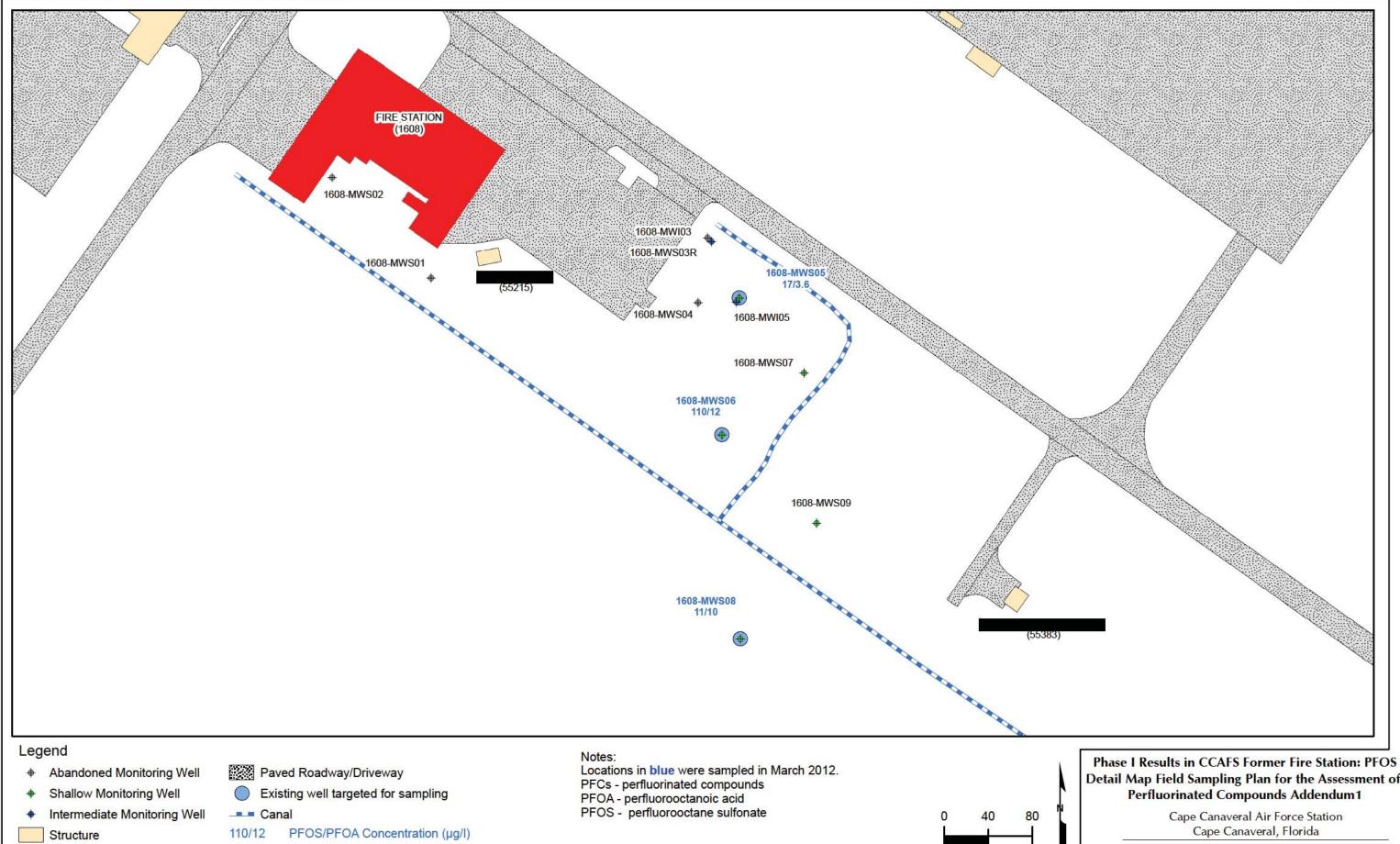



120 240 0 Scale in Feet Notes: PFOS (PHA = 0.4 mg/l) Concentrations in micrograms per liter (µg/l). Locations in red were sampled for PFCs in January 2011. Locations in blue were sampled for PFCs in March 2012. FT - Fire Training HASS - horizontal air sparge system ND - not detected PFCs - perfluorinated compounds PFOA - perfluorooctanoic acid PFOS - perfluorooctane sulfonate PHA - Public Health Advisory VASS - vertical air sparge system

> Phase I Results in the FT-17 Area: PFOS Field Sampling Plan for the Assessment of Perfluorinated Compounds Addendum 1

> > Cape Canaveral Air Force Station Cape Canaveral, Florida

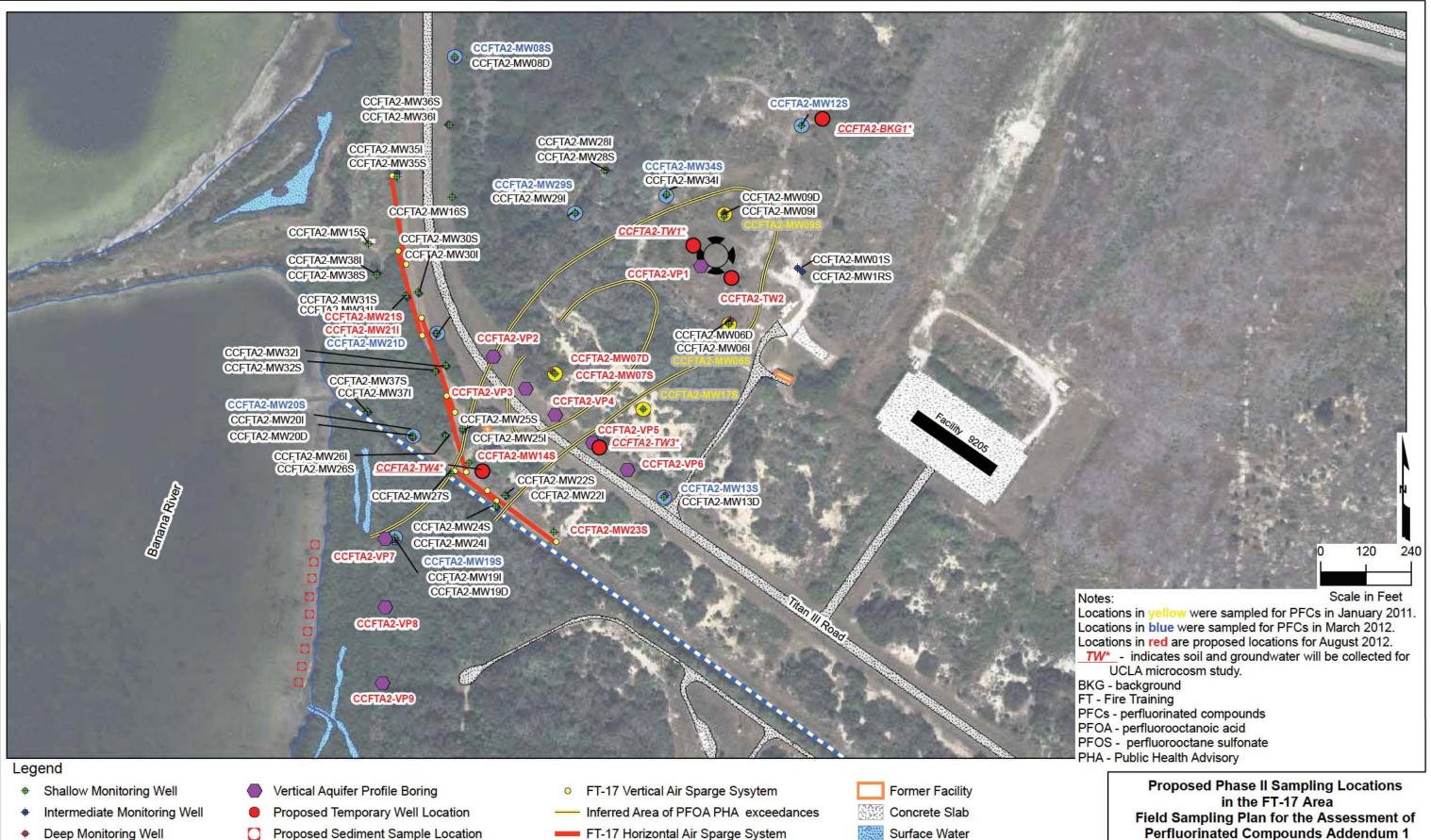
ARCADIS



Phase I Results in the FT-17 Area: PFOA Field Sampling Plan for the Assessment of Perfluorinated Compounds Addendum 1

> Cape Canaveral Air Force Station Cape Canaveral, Florida

ARCADIS



Fire Station

Detail Map Field Sampling Plan for the Assessment of

- Former Burn Pit Area

CCFTA2-MW07S Well Name

- Proposed Sediment Sample Location (Using Incremental Sampling Methodology)
- Well sampled in January 2011 for PFCs \bigcirc
- Well Sampled in March 2012 for PFCs

- Canal
- ---- Shoreline

- Surface Water
- Paved Roadway/Driveway
 - Structure

Cape Canaveral Air Force Station Cape Canaveral, Florida

ARCADIS MALCOLM PIRNIE

THINDRE CIVIL ENCINEER CENTER

Site Investigation Report for Site Investigations of Fire Fighting Foam Usage at Various Air Force Bases in the United States for Cape Canaveral Air Force Station, Brevard County, Florida

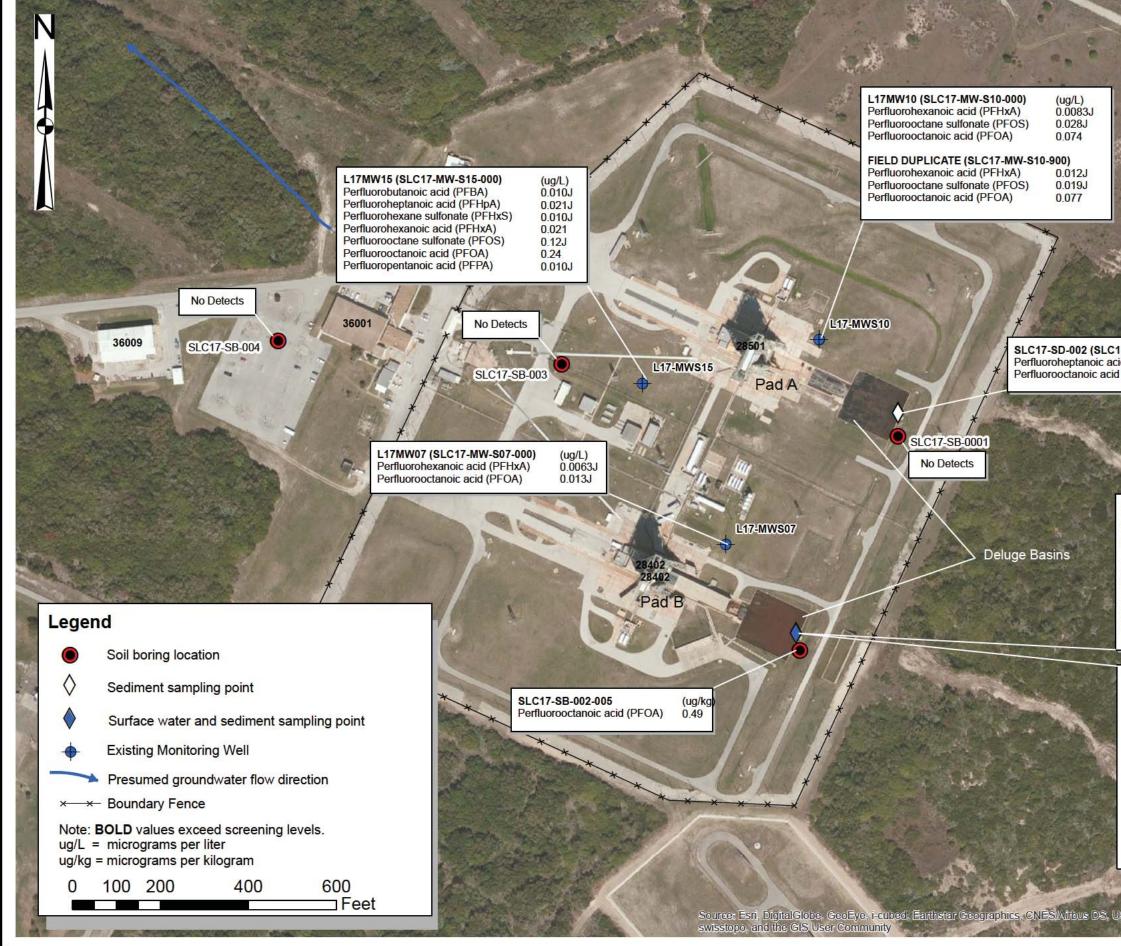
November 2014

Final

Submitted to: Air Force Civil Engineer Center 2261 Hughes Avenue, Suite 155 Lackland Air Force Base, Texas 78236-9583

Submitted by:

U.S. Army Corps of Engineers Savannah District 100 West Oglethorpe Avenue Savannah, Georgia 31401-3640


Prepared by:

SES Construction and Fuel Services LLC 1006 Floyd Culler Court Oak Ridge, Tennessee 37830-8022 under Contract No. W912HN-12-D-0021 Delivery Order 0007

Appendix A Figures

Q1062.0007

C17-SD-002-001) (ug/kg)	Ses
acid (PFHpA) 1.80J	Construction and 1006 Floyd Culler Court
acid (PFHpA) 2.0J	Fuel Services LLC Oak Ridge, Tennessee 37830
SLC17-SD-001 (SLC17-SD-001-001) (ug/kg)	Job Title: Site Investigations of
Perfluorobutanoic acid (PFBA) 11.0J	Fire Fighting Foam Usage at
Perfluoroheptanoic acid (PFHpA) 0.85J	Various Air Force Bases in the States
Perfluorooctanoic acid (PFOA) 9.1J FIELD DUPLICATE (SLC17-SD-001-901) Perfluorobetanoic acid (PFBA) 17.0J Perfluorobetanoic acid (PFHAA) 1.6J Perfluorobexanoic acid (PFHxA) 1.6J Perfluorooctanoic acid (PFOA) 0.90J Perfluorobexanoic acid (PFHxA) 1.6J Perfluorooctane sulfonate (PFOS) 0.90J Perfluorooctanoic acid (PFAA) 0.12 Perfluorobetanoic acid (PFBA) 0.12 Perfluorobetanoic acid (PFHxA) 0.12 Perfluorobetanoic acid (PFHxA) 0.12 Perfluorobetanoic acid (PFHxA) 0.12 Perfluorobetanoic acid (PFHxA) 0.12 Perfluorooctane sulfonate (PFOS) 0.02J Perfluorooctanoic acid (PFPA) 0.121 Perfluoropentanoic acid (PFPA) 0.021J FIELD DUPLICATE (SLC17-SW-001-900) Perfluorobetanoic acid (PFPA) Perfluorobetanoic acid (PFPA) 0.091 Perfluorobetanoic acid (PFPA) 0.091 Perfluorobetanoic acid (PFPA) 0.022J Perfluorobetanoic acid (PFPA) 0.12 Perfluorobetanoic acid (PFPA) 0.022J Perfluorobetanoic acid (PFPA)	Figure 3 Sample Locations and Detection Summary Space Launch Complex 17 Cape Canaveral Air Force Station, Florida

Appendix B Tables

Well Number	Northing	Easting	Depth to Water (feet/ BTOC)	Top of Casing Elevation (feet/AMSL)	Water Elevation (feet/AMSL)
L17MWS07			6.80	9.42	2.62
L17MWS10			6.41	8.97	2.56
L17MWS15			6.56	9.06	2.50

Table 1 Depth to Groundwater in Sampled Wells

AMSL = above mean sea level

BTOC = below top of casing

Table 2 Environmental Samples Collected at Space Launch Complex 17

Sample Identifier	Matrix	Sample Interval (feet/bgs)	Purpose/Location
SLC17-MW-S07-000	Groundwater	NA	Determine if PFCs are present in the shallow groundwater. Sample collected from monitoring well L17-MWS07, screened at shallow depth and situated between the launch pads, downgradient of the south deluge basin.
SLC17-MW-S10-000/ SLC17-MW-S10-900 (Field Duplicate)	Groundwater	NA	Determine if PFCs are present in the shallow groundwater. Sample collected from monitoring well LMWS10, screened at shallow depth and downgradient of the north deluge basin.
SLC17-MW-S15-000	Groundwater	NA	Determine if PFCs are in the shallow groundwater. Sample collected from monitoring well L17-MWS15, screened at shallow depth and situated between the launch pads, downgradient of the launch complex.
SLC17-SB-001-005/ SCL17-SB-001-905 (Field Duplicate)	Soil	4-5	Determine if PFCs remain in the subsurface soil above the vadose zone. Sample collected from just above the first water-saturated zone in the soil boring adjacent to the drainage point of the north deluge basin.
SLC17-SB-002-005	Soil	4-5	Determine if PFCs remain in the subsurface soil above the vadose zone. Sample collected from just above the first water-saturated zone in the soil boring adjacent to the drainage point of the south deluge basin.
SLC17-SB-003-005	Soil	4-5	Determine if PFCs remain in the subsurface soil above the vadose zone. Sample collected from just above the first water-saturated zone in a soil boring at the center of a reported area of foam release.
SLC17-SB-004-005	Soil	4-5	Determine if PFCs remain in the subsurface soil above the vadose zone. Sample collected from just above the first water-saturated zone in a soil boring at the center of a reported area of foam release.
SLC17-SD-001-001/ SLC17-SD-001-901 (Field Duplicate)	Sediment	0-1	Determine if PFCs remain in the sediments contained in the deluge basin. Sample collected at the drainage point of the south basin. Co-located with surface water sample.
SLC17-SD-002-001	Sediment	0-1	Determine if PFCs remain in the sediments contained in the deluge basin. Sample collected at the drainage point of the north basin.
SLC17-SW-001-000/ SLC17-SW-001-900 (Field Duplicate)	Surface Water	0-1	Determine if PFCs remain in the surface water standing in the deluge basins. Sample collected at the drainage point of the south basin. Co-located with sediment sample.

NA = not applicable

bgs = below ground surface PFC = perfluorinated chemical or compound

	Table 5 Te	1 Huor III		inteals	or Compou	Ius Dette	au	in Ground			A CONTRACTOR OF A CONTRACTOR			
Samp	le Number		SLC	17-MV	V-S07-000	SLC17	7- M	W-S10-000			W-S10-900 uplicate)	SLC1	7-M	W-S15-000
Analyte	CAS	EPA PHA (µg/L)	Resu (µg/)		Reporting Limit (µg/L)	Resul (µg/L		Reporting Limit (µg/L)	Result (µg/L)		Reporting Limit (µg/L)	Resul (µg/L		Reporting Limit (µg/L)
Perfluorobutanoic acid (PFBA)	375-22-4	NL	0.0098	U	0.0096	0.0098	U	0.0096	0.0097	U	0.0095	0.010	J	0.0094
Perfluoroheptanoic acid (PFHpA)	375-85-9	NL	0.020	U	0.013	0.020	U	0.013	0.019	U	0.013	0.021	J	0.013
Perfluorohexane sulfonate (PFHxS)	108427-53-8	NL	0.0098	U	0.0068	0.0098	U	0.0068	0.0097	U	0.0067	0.010	J	0.0067
Perfluorohexanoic acid (PFHxA)	307-24-4	NL	0.0063	J	0.0028	0.0083	J	0.0029	0.012	J	0.0028	0.021		0.0028
Perfluorooctane sulfonate (PFOS)	1763-23-1	0.2	0.020	UJ	0.013	0.028	J	0.013	0.019	J	0.013	0.12	J	0.013
Perfluorooctanoic acid (PFOA)	335-67-1	0.4	0.013	J	0.0096	0.074		0.0096	0.077		0.0095	0.24		0.0094
Perfluoropentanoic acid (PFPA)	2706-90-3	NL	0.0098	U	0.011	0.0098	U	0.011	0.0097	U	0.011	0.010	J	0.01

Table 3 Perfluorinated Chemicals or Compounds Detected in Groundwater Samples at SLC 17

B-21

Note: Shaded values indicate analyte not detected at the Method Detection Limit.

 $\mu g/L = micrograms per liter$

EPA = United States Environmental Protection Agency

NL = not listed; an EPA PHA value has not been established for this analyte

U = analyte not detected

CAS = Chemical Abstract Service

J = estimated value

PHA = Provisional Health Advisory. EPA Memorandum, October 2009.

UJ = analyte not detected; associated with an estimated value

	Samp	le Number	SLC17-S	D-001-001		SD-001-901 Duplicate)	SLC17-S	D-002-001
Analyte	CAS	EPA RSSL (µg/kg)	Result (µg/kg)	Reporting Limit (µg/kg)	Result (µg/kg)	Reporting Limit (µg/kg)	Result (µg/kg)	Reporting Limit (μg/kg)
Perfluorobutanoic acid (PFBA)	375-22-4	NL	11.0 J	0.46	17 J	0.67	4.2 UJ	0.85
Perfluoroheptanoic acid (PFHpA)	375-85-9	NL	2.3 UJ	0.46	0.90 J	0.67	1.8 J	0.85
Perfluorohexanoic acid (PFHxA)	307-24-4	NL	0.85 J	0.57	1.6 J	0.84	4.2 UJ	1.1
Perfluorooctane sulfonate (PFOS)	1763-23-1	6,000	2.3 U	0.54	0.90 J	0.78	4.2 U	0.99
Perfluorooctanoic acid (PFOA)	Perfluorooctanoic acid (PFOA) 335-67-1 16,0			0.88	15 J	1.3	20 J	1.6

Table 4 Perfluorinated Chemicals or Compounds Detected in Sediment Samples at SLC 17

Note: Shaded values indicate analyte not detected at the Method Detection Limit.

µg/kg = micrograms per kilogram

EPA = United States Environmental Protection Agency

NL = not listed; an EPA RSSL value has not been established for this analyte

U = Analyte not detected

CAS = Chemical Abstract Service

J = estimated value.

RSSL = Residential Soil Screening Level. EPA Memorandum, November 2009.

UJ = Analyte not detected. Associated with an estimated value.

	Sample	Number	SLC17-SW	-001-000	SLC17-SW-001-900 (Field Duplicate)			
Analyte	CAS	EPA PHA (µg/L)	Result (µg/L)	Reporti ng Limit (µg/L)	Result (µg/L)	Reporting Limit (µg/L)		
Perfluorobutanoic acid (PFBA)	375-22-4	NL	0.12	0.0095	0.091	0.0094		
Perfluoroheptanoic acid (PFHpA)	375-85-9	NL	0.10	0.013	0.099	0.013		
Perfluorohexane sulfonate (PFHxS)	108427-53-8	NL	0.0097 U	0.0068	0.0071 J	0.0067		
Perfluorohexanoic acid (PFHxA)	307-24-4	NL	0.12	0.0028	0.12	0.0028		
Perfluorooctane sulfonate (PFOS)	1763-23-1	0.2	0.020 J	0.013	0.019 UJ	0.013		
Perfluorooctanoic acid (PFOA)	335-67-1	0.4	0.74 J	0.0095	0.70	0.0094		
Perfluoropentanoic acid (PFPA)	2706-90-3	NL	0.021 J	0.011	0.022 J	0.011		

Table 5 Perfluorinated Chemicals or Compounds Detected in Surface Water Samples at SLC 17

Note: Shaded values indicate analyte not detected at the Method Detection Limit. BOLD values exceed the corresponding screening value.

CAS = Chemical Abstract Service J = Estimated value.

µg/L = micrograms per liter EPA = United States Environmental Protection Agency

NL = not listed; an EPA PHA value has not been established for this analyte

PHA = Provisional Health Advisory. EPA Memorandum, October 2009.

U = analyte not detected

VZ Technologies LLC 14640 Hangar Rd, Suite 2306 Patrick AFB, FL 32925 Phone: 321-853-6951

14 Nov 16 SP16-130

ATTENTION: Patrick Giniewski, 45 CES/CEI Patrick.Giniewski@us.af.mil

SUBJECT: Cape Canaveral Air Force Station (CCAFS) Regional Wastewater Treatment Facility (WWTF) Percolation Pond Groundwater Monitoring for PFOS and PFOA

1. <u>Introduction</u>: On 19 Oct 16 and 20 Oct 16, sampling of all ten groundwater monitoring wells at the percolation ponds for the subject facility was conducted by Robin Carter and Travis Young, VZ Technologies, LLC.

2. <u>Methodology</u>: Prior to groundwater samples being obtained, each of the monitoring wells were purged with a Geopump II Peristaltic Pump with Easy-Load head and dedicated well tubing with disposable pump head tubing for each monitoring well. Water levels were recorded from each of the monitoring wells using a Heron Water Level Meter. During purging activities, field parameter measurements were measured using a YSI Professional Plus pH/salinity/dissolved oxygen/conductivity/temperature meter, and a Hanna Model 93414 Turbidity meter. Monitoring well purge activities and field parameter measurements were conducted in accordance with FDEP Standard Operating Procedures, dated July 2014 (DEP-SOP-001/01). All field equipment was properly calibrated and/or verified prior to use in the field. Groundwater samples were collected, placed on wet ice, and submitted under chain-of-custody documentation to the subcontracted laboratory Accutest.

3. <u>Results</u>: The monitoring well numbers and analytical laboratory results are summarized in Table 1.

4. <u>Documentation</u>: Attached are copies of the laboratory analysis results and groundwater sampling logs for you information and files. Also included is a short customer feedback form. We appreciate your comments about our service, so please complete and return the survey to us. Should there be any questions concerning this report or the attachments, contact Travis Young at (321) 890-7532.

Richard B. Davis, PE Program/Contract Manager Environmental Support Contract III

Attachments: a/s

- cc: J. Tarantine, John.Tarantine@us.af.mil, 45 CES/CEIE
 - D. May, Darren.May.ctr@us.af.mil, ESC
 - J. Barnes, Joan.Barnes@us.af.mil, 45 CES CEOE

Table 1 Analytical Laboratory Results

Parameter	Units	MW-1	MW-3	MW-5R	MW-6	MW-7	MW-9	MW-10	MW-11	MW-12	MW-13				
	Perfluoroalkylcarboxylic Acids														
Perfluoroheptanoic acid		0.0077 U	0.01771	0.0503	0.0236	0.0300	0.0295	0.0245	0.0163	0.0077 U	0.0077 U				
Perfluorooctanoic acid	µg/L	0.0038 U	0.0164	0.0409	0.0245	0.0291	0.0254	0.0287	0.0148 I	0.0038 U	0.0038 U				
Perfluorononanoic acid		0.0038 U	0.007691	0.01991	0.0040 U	0.0123	0.0130 I	0.0129	0.006161	0.0038 U	0.0038 U				
				Perfluoroal	kylsulfonates	S									
Perfluorobutanesulfonic acid		0.0077 U	0.01171	0.0083 U	0.0080 U	0.0156	0.0146	0.0145	0.0288	0.0077 U	0.0077 U				
Perfluorohexanesulfonic acid	µg/L	0.0178 I	0.185	0.208	0.0660	0.259	0.193	0.171	0.176	0.0077 U	0.009921				
Perfluorooctanesulfonic acid		0.0477	0.612	0.250	0.285	0.250	0.511	0.472	0.201	0.0038 U	0.0038 U				

 NOTES

 1.
 I - Indicates the reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).

 2.
 U - Indicates that the compound was analyzed for but not detected.

APPENDIX B

PHOTOGRAPH LOGS

This page intentionally left blank.

FIELD FORMS

FIELD ACTIVITY DAILY LOGS

	FIELD ACTIVIT	Y DAILY LOG			amec foster wheeler				
Project Name:	Site Inspection of AFFF Relea Environmental Programs Wo		Project Number:		775303101.0007				
– Contract:	FA8903-16-D-0027		ask Order:	1900	0004				
Installation:	Cape Canaveral AFS (CA	APEC)	nvestigation Area:	10	AFFF Release Area 1				
Weather:	Cloudy, 10-15 mph winds, up	pper 80s	Date and Time:		05/22/17 2249				
Technician(s):		Jason	layes, Jason Drizd						
tooling and the rig itself acceptable ranges, 1110 CAPEC-FD-SO-001. F 1215-started hand at MW01003, 1335-complete CAPEC01-SO-001, 147 completed MW01001, se location, 1540-finished de	0730-arrived at Cape Canaveral Visitor Center. Met personnel from AmDrill, 0915-all personnel were finally approved to get passes and proceeded to AFFF Area 1, 0920-John Langett arrived on-site., 0930-conducted tailgate safety meeting and completed pfc protocol checklist., 0950-AmDrill started decon of all tooling and the rig itself. AmecFW personnel calibrated both PID, turbidity, and YSL, 1000-John Langett left site., 1030-all equipment was calibrated within acceptable ranges, 1110-Started hand augering at MW01003, 1115-took sample CAPEC01-SO-005, 1120-took sample CAPEC01-SO-006, 1125-took sample CAPEC-FD-SO-001. FD was taken at MW01003, 3-4 foot interval., 1200-completed MW01003, set up to develop well. AmDrill set up to decon all tooling., 1215-started hand augering at MW01002, set up to develop well. AmDrill set up to decon all tooling., 1355-started hand augering at MW01001, 1405-took sample CAPEC01-SO-001, 1415-took sample CAPEC01-SO-002. An MS/MSD was taken at the 3-4 foot interval., 1415-finished development of MW01002, 1500- completed MW01001, set up to develop well. AmDrill set up to decon all tooling., 1530-took sample CAPEC01-SD-001. An MS/MSD and FD was taken at this location, 1540-finished development of MW01001, 1545-took sample CAPEC-EB-001 from shoe of DPT rod tooling., 1550-took sample CAPEC-FB-001, 1600- left Cape Canaveral to go to Patrick AFB., CAPEC01-SO-005, CAPEC01-SO-006, CAPEC-FD-SO-001, CAPEC01-SO-003, CAPEC01-SO-004, CAPEC01-SO-001, CAPEC01-SO-002, CAPEC01-SD- 001, CAPEC-FD-SD-001, CAPEC-FB-001, CAPEC-FB-001								
Deviation from Plans		None							
Visitors on Site:		Important Telepho	one Calls / Photos Ta	ken:	Signature:				

	FIELD ACTIVITY	' DAILY LOG			amec foster wheeler
Project Name:	Site Inspection of AFFF Relea Environmental Programs Wo		Project Number:		775303101.0007
Contract:	FA8903-16-D-0027		Task Order:		0004
Installation:	Cape Canaveral AFS (CA	PEC)	Investigation Area:		AFFF Release Area 1
Weather:	Cloudy, windy, upper 8	i0s	Date and Time:	s	05/24/17 1828
Technician(s):		Jas	on Hayes, Jason Drizd		
tailgate safety meeting Area 1., 0930-begin (purging MW01002., 1 1125-AmecFW and An all wells at Cape C	CAPEC01-GW-001, CAPE	Canaveral AFS to 6 9 MW01001., 1026 begin purging MW eral AFS to start a 1 to designated sta	conduct groundwater samp S-finish sampling MW01001 01003., 1156-finish purging bandonment of MW01001 Iging area as directed by Jo	ling., 0830-a. ., 1028-begii g MW01003., to MW01003 hn Langett.	rrive at Cape Canaveral AFS AFFF n purging MW01002., 1108-finish , 1158-finish sampling MW01003., 8., 1430-completed abandonment of Mobilized back to Patrick AFB.
Deviation from Plan	s:	None	G		
Visitors on Site:	None	Important Tel	ephone Calls / Photos	Taken:	Signature: Mare (print): Jason Hayes

	FIELD ACTIVIT	amec foster wheeler			
Project Name:	Site Inspection of AFFF Relea Environmental Programs Wo		oject Number:		775303101.0007
Contract:	FA8903-16-D-0027	Та	sk Order:		0004
Installation:	Cape Canaveral AFS (CA	PEC) Inv	estigation Area:		AFFF Release Area 1
Weather:	Clear calm, mid 80s	Da	te and Time:		05/25/17 1800
Technician(s):		Jason	Hayes, Jason Drizd		
Gary Kihn and Jason Ha Cape Canaveral AFS a total of 4 drums of IDW	ted: CA	o get base specific lab PEC-Liquid IDW)., 17	els for IDW., 1410-Gary F 5-verified all drums were e liquid waste from purge ravel home.	Kihn and Jas labeled pro	on Hayes left site., 1700-arrived at perly with base specific labels. A
Deviation from Plans	5.	None			
Visitors on Site: QA/QC'd by:	None Thomas W. Hensel	Important Telep	none Calls / Photos T None	aken:	Signature: Mame (print): Jason Hayes 6/16/2017

DAILY PFAS PROTOCOL CHECKLISTS

		ATTACHMENT 1 TO SOP AFW-0 DAILY PFAS PROTOCOL CHECKLI				amec foster wheeler	
Proj	ect Name:	Site Inspection of AFFF Release Areas Environmental Programs Worldwide	Proj	ect Number:		775303101 0007	
Con	tract:	FA8903-16-D-0027	Task	· Order:		0004	
Insta	allation:	Cape Canaveral AFS (CAPEC)	Wea	-			
Site	Area Name:	AFFF Release Area 1	(ten	np./precipitation):	Cloudy, 1	.0-15 mph winds, upper 90s	
Field	d Manager:	Jason Hayes	Date	e and Time:		05/22/17 0931	
Fie	ld Clothing and	PPE (as applicable):	Sa	mple Containers:			
> 7		ompliance with Tables 1 and 2, SOP AFW-01 not used fabric softener on clothing	All sample containers made of HDPE or polypropylene. Samples are not stored in containers made of LDPE				
		not used cosmetics, moisturizers, hand cream, d products or exposed body parts this morning	J	Caps are lined or unlined and made of HDPE or polypropylene			
7	Field crew has r repellant	not applied unacceptable sunscreen or insect	W	et Weather (as applie		amples and for sampling	
Fie	eld Equipment:		1	For personnel in direct contact with samples and/or sampling equipment, wet weather gear made of Vinyl, polyurethane, PVC			
	No Teflon® cor	ntaining materials on-site		latex or rubber-coat	ed materials only		
3	All sample mate silicon, or polyp	erials made from stainless steel, HDPE, acetate, propylene	Eq	uipment Decontamir			
1	No waterproof Products	field books on-site other than Rite-in-the-Rain®	1	"PFAS-free" water o	n-site for deconta	amination of sample equipment	
7	No plastic clipbo on-site	oards, binders, or spiral hard cover notebooks	Alconox and Liquinox to be used as decontamination materials Food Considerations:				
1	No adhesives (F	Post-it® Notes) on-site	0.00		cite with excentio	on of hottled water and/or	
1	Coolers filled w packs in posses	vith regular ice only. No chemical (blue) ice ssion	No food or drink on-site with exception of bottled water and/or hydration drinks (i.e., Gatorade and Powerade) that is available for consumption only in the staging area				
	compliance issues p	boxes cannot be checked, the Field Manager shall desc prior to commencement of that day's work. Corrective ite until in compliance. Repeated failure to comply wit invest	e actio th PFA	n shall include removal	of noncompliance i	tems from the investigation area or	
	Describe the non	ncompliance issues (include personnel not in complianc	ce) and	d action/outcome of no	ncompliance:	Signature: An An	
					1	Name (print): Jason Hayes	
QA/	QC'd by:	Thomas W. Hensel Thomas D. Hense	l	12	QA/QC Date:	6/14/2017	

	ATTACHMENT 1 TO SOP AFW- DAILY PFAS PROTOCOL CHECKL	13050			amec foster wheeler		
Project Name:	Site Inspection of AFFF Release Areas Environmental Programs Worldwide	Proj	ect Number:		775303101 0007		
Contract:	FA8903-16-D-0027	Task	Order:		0004		
Installation:	Cape Canaveral AFS (CAPEC)	Wea	ther				
Site/Area Name:	AFFF Release Area 1	-	np./precipitation):	Cloudy, windy, m	id 80s, chance of rain in the afternoon		
Field Manager:	Jason Hayes	Date	and Time:		05/24/17 0700		
Field Clothing and P	PPE (as applicable):	Sa	mple Containers:				
	npliance with Tables 1 and 2, SOP AFW-01 ot used fabric softener on clothing	7			or polypropylene. Samples are PE		
	ot used cosmetics, moisturizers, hand cream, products or exposed body parts this morning	J	Caps are lined or un	nlined and made	of HDPE or polypropylene		
Field crew has no repellant	ot applied unacceptable sunscreen or insect	W	et Weather (as appl		1		
Field Equipment:		-	and a state of the second state of the		samples and/or sampling of Vinyl, polyurethane, PVC,		
	aining materials on-site		latex or rubber-coa	tests and the first of the state of the			
	rials made from stainless steel, HDPE, acetate,		uipment Decontami				
No waterproof fi Products	ield books on-site other than Rite-in-the-Rain®	~	"PFAS-free" water of	on-site for decont	tamination of sample equipment		
No plastic clipbo	ards, binders, or spiral hard cover notebooks	Fo	Alconox and Liquin	ox to be used as o	decontamination materials		
No adhesives (Po	ost-it® Notes) on-site		No food or drink or	cito with excent	ion of bottled water and /or		
Coolers filled wit	th regular ice only. No chemical (blue) ice ion	7	No food or drink on-site with exception of bottled water and/or hydration drinks (i.e., Gatorade and Powerade) that is available for consumption only in the staging area				
noncompliance issues pr	oxes cannot be checked, the Field Manager shall des rior to commencement of that day's work. Correctiv re until in compliance. Repeated failure to comply w inves	e actio	n shall include remova S sample protocols will	of noncompliance	items from the investigation area o		
Describe the nonc	compliance issues (include personnel not in complian	nce) and	d action/outcome of no	oncompliance:	Signature: An-Hym		
					Name (print): Jason Hayes		
QA/QC'd by: T	homas W. Hensel Thomas D. Afense	l		QA/QC Date:	6/14/2017		

			IMENT 1 TO SOP AFW- AS PROTOCOL CHECK	Statistics.			amec foster wheeler
Project N	lame:		AFFF Release Areas rograms Worldwide	Pro	ject Number:		775303101 0007
Contract		FA8903	-16-D-0027	Tas	k Order:	1 <u>0</u>	0004
Installati	on:	Cape Canaver	al AFS (CAPEC)	We	ather	2	
Site/Area	a Name:	AFFF Rel	ease Area 1		np./precipitation):		Cloudy calm mid 80s
Field Ma	nager:	Jaso	n Hayes	Dat	e and Time:	3	05/25/17 0800
Field Cl	lothing and PPE	(as applicable):		Sc	ample Containers:		
29-63 • • • • • • • • • • • • • • • • • •		iance with Tables 1 used fabric softene	and 2, SOP AFW-01	-		ners made of HDPE ainers made of LDP	or polypropylene. Samples are E
			isturizers, hand cream, body parts this morning	1	Caps are lined or	unlined and made o	f HDPE or polypropylene
4	d crew has not a ellant	pplied unacceptab	le sunscreen or insect	и	/et Weather (as app		isomelies and for compling
Field Ed	quipment:			1	and the second second second second		amples and/or sampling of Vinyl, polyurethane, PVC,
No No	Teflon [®] contain	ing materials on-si	te		latex or rubber-co	ated materials only	
~	sample materials con, or polypropy		ess steel, HDPE, acetate,	Ec	quipment Decontan		
~	waterproof field ducts	books on-site oth	er than Rite-in-the-Rain®	- -			amination of sample equipment econtamination materials
✓ No on-		s, binders, or spira	I hard cover notebooks	Fo	ood Considerations.		
V No	adhesives (Post-	it [®] Notes) on-site			No food or drink	on-site with excepti	on of bottled water and/or
	olers filled with re ks in possession		o chemical (blue) ice	4	hydration drinks (Powerade) that is available for
noncompl	liance issues prior	to commencement of	of that day's work. Corrective epeated failure to comply w	ve actio	on shall include remov	al of noncompliance	with field personnel to address items from the investigation area or anent removal of worker(s) from the
Des	cribe the noncom	pliance issues (incluc	de personnel not in complian None	nce) an	d action/outcome of	noncompliance:	Signature: An Am
							Name (print): Jason Hayes
QA/QC'd	l by: Thor	mas W. Hensel	Thomas 2. Afena	l		QA/QC Date:	6/15/2017

TAILGATE SAFETY MEETING REPORTS

TAILGATE SAFETY MEETING REPORT

amec 🔼	
foster	
wheeler	

Project Name: Site Inspection of AFFF Environmental Progra						775303101.0007	75303101.0007	
Installation: Cape Canaveral AFS (CAPEC) Field Manager Name: Jason Hayes		-D-0027 Task Order:			-	0004		
		Date and Time:		e and Time:	-	05/22/17 0915		
		Site	Health and Safety Office	er (HSO):	Jason Hayes			
Safety Meeting Type:	Initial Kickoff Tailgate		of B	usiness				
Topics Discussed (checl	k all that apply)	Cider	J. D	4011000				
Site History/Site Layout			7	PPE Required/PPE Used				
 Scope of Work Personnel Responsibilitie 			~	Define PPE Levels, Donnin				
			1	Physical Hazards and Cont Decontamination Procedure		• ,		
	quirements		Ľ			cations of air horns and what 1 or 2 bla	ete	
 Training Requirements Safe Work Practices Logs, Reports, Recordke 			J	indicate)	dules (e.g., lo		1515	
	eping		1	Site/Regional Emergency F	Procedures (e	.g. earthquake response, typhoon respo	onse,	
Sanitation and Illuminatio			÷.	etc.)				
 Air Surveillance Type and Monitoring Instruments and 			~			res (e.g., exposure control precautions,		
 Monitoring Instruments an Action Levels 	nd Personal Monitoring		-	location of first aid kit, etc.) Hazardous Materials Spill F				
Accident Reporting Proce	edures		L L			ation Program, Safe Driving, etc.)		
· · ·	ss, buddy system, work zone	s, security,	7	Injury/Illness Reporting Pro	-			
communications)			1	Route to Hospital and Medi	ical Care Prov	vider Visit Guidelines		
	near misses" including work o	rew suggestions to	1		asks (chemic	al, physical, biological and energy healt	h	
	avoid similar occurrences		-	hazards and effects)		H		
Engineering Controls			1			the activity (EM-385 1-1, para 01.A.13	o.D)	
Safety suggestions by site worke	ers:			Watch work				
Action taken on previous sugges				Communicate with drillers	s before appro	aching rig		
Injuries/accidents/personnel char meeting:	nges since previous	NA						
Observations of unsafe work pra developed since previous meetin		None						
Location of (or changes in the loo routes/safe refuge areas:	cations of) evacuation	Equipment lay-down yard						
Other Safety Topics Discussed:		None						
Additional comments:		None						
Attendee signa	atures below indicate acknowle	edgment of the information	and wi	llingness to abide by the proce	edures discuss	ed during this safety meeting.		
Attendee Name (print)	Company	Signature		Attendee Name (print)	Com	pany Signature		
Jason Hayes	Amec FW	2m Dr						
Jason Drizd	Amec FW) NA						
Gary Kihn	Amec FW	Aging r. Id						
Todd Ives	AmDrill, Inc.	1						
Keith Anderson	AmDrill, Inc.	Herth Inderor						
John Langett	AFCEC/CZOE	JM/						
		<u> </u>						
			+					
			+					
Masting Or due	ted Du (print)			w and Title		Cianchura		
Meeting Conduc				y and Title Field Manager		Signature		
QA/QC'd by: Thomas W. H	lensel Thomas	, 2. Afensel			QA/Q0	C Date: 6/14/2017		

TAILGATE SAFETY MEETING REPORT

amec 📐	
foster	
wheeler	

Project Name:	Site Inspection of AFF Environmental Progr					775303101.0007		
Contract: FA8903-16-D		-D-0027 Task Order:				0004		
Installation:	Cape Canaveral A			e and Time:		05/24/17 0700		
Field Manager Name:	Jason Ha		Site	Health and Safety Officer	(HSO):	Jason Hayes		
Safety Meeting Type:	Regular/Daily Tailgate		- (D					
Taulas Disauras d (abas)		Order	of B	usiness				
Topics Discussed (check Site History/Site Layout Scope of Work Personnel Responsibilitie Medical Surveillance Requirements Safe Work Practices Logs, Reports, Recordkee Sanitation and Illumination Air Surveillance Type and Monitoring Instruments ar Action Levels Accident Reporting Proces	ies equirements xeeping ion nd Frequency			PPE Required/PPE Used Define PPE Levels, Donning, Physical Hazards and Contro Decontamination Procedures General Emergency Procedur indicate) Site/Regional Emergency Pro- etc.) Medical Emergency Respons location of first aid kit, etc.) Hazardous Materials Spill Pro- Applicable SOPs (e.g., Hearir	oment horns and what 1 or 2 blasts e response, typhoon response, osure control precautions,			
	ss, buddy system, work zone	s, security,	7 7 7	Injury/Illness Reporting Proce Route to Hospital and Medica	dures			
correct work practices to	ear misses" including work o avoid similar occurrences	rew suggestions to	1	Hazard Analysis of Work Tas hazards and effects)		• •		
Engineering Controls			7	Review AHAs with all parties	engaged in the activity (EM-385 1-1, para 01.A.13.b)		
Safety suggestions by site worke	rs:			Weather may be	in the area			
Action taken on previous sugges				Listen for warning call	s from the base			
Injuries/accidents/personnel char meeting:	nges since previous	None						
Observations of unsafe work prac developed since previous meeting		None						
Location of (or changes in the loc routes/safe refuge areas:	cations of) evacuation	Equipment lay-down yard						
Other Safety Topics Discussed:		None						
Additional comments:				None				
Attendee signa	tures below indicate acknowle	dgment of the information and willingness to abide by the procedures discussed during this safety meeting.						
Attendee Name (print)	Company	Signature		Attendee Name (print)	Company	Signature		
Jason Hayes	Amec FW	In Dr 2024						
Jason Drizd	Amec FW) NA						
Gary Kihn	Amec FW	Agens r. Id						
Todd Ives	AmDrill, Inc.	1						
Keith Anderson	AmDrill, Inc.	Kent Inderor						
ļ ļ								
Meeting Conduc	ted By (print)	Co	ompan	y and Title		Signature		
Jason H	ayes	Amec	; FW -	Field Manager	Jun V	h		
QA/QC'd by: Thomas W. H	lensel Thomas i	S. Sfenael			QA/QC Date:	6/14/2017		

TAILGATE SAFETY MEETING REPORT

amec	
foster	
wheeler	

						Wheeler		
Project Name:	Site Inspection of AFF Environmental Progra					775303101.0007		
Contract:	FA8903-16-I	-D-0027 Task Order:			0004			
Installation:	Cape Canaveral A					05/25/17 0800		
Field Manager Name:	Field Manager Name: Jason Hay		Site	Health and Safety Officer	(HSO):	Jason Hayes		
Safety Meeting Type:	Regular/Daily Tailgate							
		Order	r of B	usiness				
Topics Discussed (check	all that apply)							
Site History/Site Layout			~		Deffing Dresedures			
 Scope of Work Personnel Responsibilities 			$\overline{\checkmark}$		-	lity lines)		
 Personnel Responsibilities Medical Surveillance Requ 			Ū.	Decontamination Procedures		• •		
Training Requirements			_			f air horns and what 1 or 2 blasts		
Safe Work Practices			\checkmark	indicate)				
 Logs, Reports, Recordkee Sanitation and Ilumination 	eping			Site/Regional Emergency Pro	ocedures (e.g. earthq	uake response, typhoon response,		
Sanitation and Ilumination			\checkmark	etc.)				
 Air Surveillance Type and Monitoring Instruments and 			\checkmark		se Procedures (e g., e	exposure control precautions,		
	d Personal Monitoring		_	location of first aid kit, etc.)				
 Action Levels Accident Reporting Process 	duroo		✓ ✓	Hazardous Materials Spill Pro Applicable SOPs (e g., Heari		gram Safe Driving etc.)		
	aures s, buddy system, work zone:	s security	Ā	Injury/Illness Reporting Proce	-	gram, Sale Diwing, etc.)		
communications)	s, buddy system, work zone.	s, security,		Route to Hospital and Medica		Guidelines		
 Discussion of previous "ne 	ear misses" including work c	rew suggestions to	_			al, biological and energy health		
correct work practices to a	•		\checkmark	hazards and effects)				
 Engineering Controls 			\checkmark	Review AHAs with all parties	engaged in the activi	ity (EM-385 1-1, para 01.A.13 b)		
Safety suggestions by site worker	s:			Be aware of	hazards			
Action taken on previous suggesti				Notify all personnel of potentia	al hazards noticed ons	ite		
Injuries/accidents/personnel chan			Notify all personnel of potential hazards noticed onsite					
meeting:		None						
Observations of unsafe work prac developed since previous meeting		None						
Location of (or changes in the loca routes/safe refuge areas:	ations of) evacuation			Equipment lay-	down yard			
Other Safety Topics Discussed:				None	1			
Additional comments:				None	•			
Attendee signat	tures below indicate acknowle	dgment of the information	and wi	illingness to abide by the proced	ures discussed during	this safety meeting.		
Attendee Name (print)	Company	Signature		Attendee Name (print)	Company	Signature		
Jason Hayes	Amec FW	2m Dr						
Jason Drizd	Amec FW) NG						
Gary Kihn	Amec FW	Agun 1. 1d						
			╡					
			\dashv					
			+					
			+					
			-					
			\downarrow					
Meeting Conduct	ed By (print)	C	ompar	y and Title		Signature		
Jason Ha	ayes	Ame	c FW -	Field Manager	In	An		
QA/QC'd by: Thomas W. He	ensel Thomas	2. Afenael			QA/QC Date:	6/15/2017		
l								

SOIL BORING/MONITORING WELL RECORDS

Ē	D		1 (L)	SAMPL	FS			
	EPTH	SOIL CLASSIFICATION AND REMARKS	L E E L G E E V	SAMPLE	т	PID	MONITORING WELL CONSTRUCTION DETAILS	DEPT
	(ft) - 0	SEE KEY SYMBOL SHEET FOR EXPLANAT ON OF SYMBOLS AND ABBREV AT ONS USED BELOW	N D (ft) 70	ID	Ê	ppm)	AND REMARKS	H - 0
3		Poorly-graded Sand (SP) pale brown (10YR 6/3) dry 95% medium to fine sand 5% fines trace organics	-	CAPEC01-SO-001		00		1
		Poorly-graded Sand with Silt (SP-SM) yellowish brown (10YR 5/4) dry 90% medium to fine sand 10% fines		-		00		4. Ta
22		Silty Sand (SM) light gray (10YR 7/1) moist 85% medium - to fine sand 15% fines	-	CAPEC01-SO-002		00	2	ň
ł	- 5		- 20					5
ľ		Color change to 10 YR 6/3 (pale brown) at 6' bgs		-				
		Groundwater encountered at 7' bgs						19 10
3								ē.
	10	Poorly-graded Sand (SP) yellowish brown (10YR 5/6) wet 95% medium to fine sand 5% fines shell fragments		K.J.				10
	- 10		30					10
Ē		-		-				
3		-		-				
		Silty Sand (SM) gray (10YR 5/1) wet 75% medium to fine		-				ž.
2		- sand 25% fines						ñ
ł	- 15	5 End of Boring at 15' bgs No refusal Boring was pushed with	-80	-				15
2		 3 75" rods to set temp well MW01001 		-			-	197
		-	1	-			-	11
-		-		-			-	
7/18/17			2				2	ñ
EGD	- 20)-	13 () —			-	20
EMPLA		-		-			-	1714
		-	1	-			-	15
O 0004 GPJ AMECFW		-	-	-			-	19
04 GP.		-	2 <u>-</u> 2	_			-	ñ
	- 25	5	-18 ([25
2 CAPE	STAD	RT DATE 5/22/2017 TOC ELEVAT ON 6 97 ft		1 - Santa - Santa Jan - Santa - Santa - Santa - Santa - Santa - Santa - Santa - Santa - Santa - Santa - Santa - S				
3	END DR LL	DATE 5/22/2017 GROUND ELEVAT ON 6 97 ft LER AmDrill VERT CAL DATUM NAVD88					DNITORING WELL RECOR	RD
MWELL	EQU F METH HOLE		Plane	Project No: 7	7530	310	1.0007.0400	
ROCK-	STE		nut flu	Checked By: T.	Her	nsel	Well No. MW0100)1
EC N	AY DIF	ECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT TI RATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT O' FFER. INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWE GRADUAL.	THER TIMES	amec foster	wh	eel	er view 2030 Fa ng Waters Ro Su te 300 Knoxv e, TN 37922	oad
<	DE DE			5				-

D			4	SAMPLE	S						
E P T H (ft)	SOIL CLASSIFICATION AND REMARKS SEE KEY SYMBOL SHEET FOR EXPLANAT ON OF SYMBOLS AND ABBREV AT ONS USED BELOW		E L V (ft)	SAMPLE	TYPE	PID (ppm)	MONITORING WELL CONSTRUCTION DETAILS AND REMARKS	DEPTH			
- 0 -	Poorly-graded Sand (SP) pale brown (10YR 6/3) dry 95% medium to fine sand 5% fines trace organics	-	- 62	CAPEC01-SO-003		00	-	- 0			
	Poorly-graded Sand with Silt (SP-SM) very pale brown (10YR 7/3) moist 90% medium to fine sand 10% fines		-	CAPEC01-SO-004		00	-				
- 5 -	Silty Sand (SM) light gray (10YR 7/1) moist 85% medium to fine sand 15% fines	-	- 12	_				- 5			
	Groundwater encountered at 6' bgs]							
	Silty Sand (SM) pale brown (10YR 6/3) wet 85% medium to fine sand 15% fines		-1	-							
- 10- 	Poorly-graded Sand (SP) yellowish brown (10YR 5/6) wet 95% medium to fine sand 5% fines shell fragments		38 ·	-				- 10			
	Silty Sand (SM) gray (10YR 5/1) wet 75% medium to fine sand 25% fines		88	-				- 15			
	End of Boring at 15' bgs No refusal Boring was pushed with 3 75" rods to set temp well MW01002	-	-	-			-				
7/18/17							-	8 1			
- 20- u	-		13 8				-	- 20			
EW EMPLA			-	-			-				
0 0004 GPJ AMECFW	-	-	-1	-			-	1			
			18 8]				- 25			
START S START DR LLE	ATE 5/22/2017 GROUND ELEVAT ON 6 19 ft R AmDrill VERT CAL DATUM NAVD88	I					DNITORING WELL RECOR	RD			
START END DA END DA DR LLE EQU PM METHO HOLE D S TE LOGGE	DD Geoprobe Direct Push EAST NG 4-inch HOR ZONTAL DATUM FL State Cape Canaveral AFS Area 1	Plane		Project:PFAS Release Area Site InvestigationProject No:775303101.0007.0400Checked By:T. HenselWell No. MW01002							
U EXPLORA	ORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT TION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT ER. INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETV	OTHER TIM		amec foster	W	heel	Ler View 2030 Fa ng Waters Ro Su te 300 Knoxv e, TN 37922	oad			

Def SOIL CLASSIFICATION AND REMARKS L E E SAMPLES MONITORING WEL CONSTRUCTION DET H SEE KEY SYMBOL SHEET FOR EXPLANAT ON OF SYMBOLS AND ABBREV AT ONS USED BELOW N (ft) (ft) FPD MONITORING WEL CONSTRUCTION DET - 0 Poorty-graded Sand (SP) pale brown (10YR 6/3) dry 95% medium to fine sand 5% fines trace organics 61 CAPEC01-SO-005 0.0 0.0 - 0 Poorty-graded Sand with Silt (SP-SM) yellowish brown (10YR 5/4) dry 90% medium to fine sand 10% fines 0.0 0.0 0.0 - 0 Color change to 10YR 7/3 (very pale brown) at 2' bgs becomes moist CAPEC01-SO-006 0.0 0.0	
(ft) OF SYMBOLS AND ABBREV AT ONS USED BELOW D (ft) 0 0 61 CAPEC01-SO-005 00 Poorly-graded Sand (SP) pale brown (10YR 6/3) dry 95% 00 00 00 Poorly-graded Sand with Silt (SP-SM) yellowish brown (10YR 5/4) dry 90% medium to fine sand 10% fines 00 00 Color change to 10YR 7/3 (very pale brown) at 2' bgs CAPEC01-SO-006 00 00 Silty Sand (SM) light gray (10YR 7/1) moist 85% medium 00 00 00	
Poorly-graded Sand (SP) pale brown (10YR 6/3) dry 95% CAPEC01-SO-005 0 0 medium to fine sand 5% fines trace organics 0 0 0 0 Poorly-graded Sand with Silt (SP-SM) yellowish brown (10YR 5/4) dry 90% medium to fine sand 10% fines 0 0 0 0 Color change to 10YR 7/3 (very pale brown) at 2' bgs CAPEC01-SO-006 0 0 Silty Sand (SM) light gray (10YR 7/1) moist 85% medium 0 0 0 0	5
(10YR 5/4) dry 90% medium to fine sand 10% fines Color change to 10YR 7/3 (very pale brown) at 2' bgs becomes moist Silty Sand (SM) light gray (10YR 7/1) moist 85% medium	5
Silty Sand (SM) light gray (10YR 7/1) moist 85% medium	5
	5
to fine sand 15% fines	5
- 5 - Color change to 10YR 6/3 (pale brown) at 4' bgs becomes wet	
Groundwater encountered at 6' bgs	
Poorly-graded Sand (SP) yellowish brown (10YR 5/6) wet 95% medium to fine sand 5% fines shell fragments	
- 10-	- 10
Silty Sand (SM) gray (10YR 5/1) wet 75% medium to fine sand 25% fines	
15 End of Boring at 15' bgs. No refusal Boring was pushed with 3 75" rods to set temp well MW01003	⊥ 15
1/18/12	9 <u>11</u> 85
eg = 20− = -139−	- <mark>2</mark> 0
	-
-18 9	<u>2</u> 5
DR LLER AMDINI VERI CAL DATUM NAVD88 EQU PMENT Geoprobe 6625CPT NORTH NG METHOD Geoprobe Direct Push EAST NG HOLE D A 4-inch HOR ZONTAL DATUM FL State Plane Project No: 775303101.0007.0400	ition
S TE Cape Canaveral AFS Area 1 Checked By: T. Hensel Well No. MV OC LOGGED BY J Hayes	
THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.	

SOIL SAMPLE COLLECTION LOGS

SOIL SAMPLE COLLECTION LOG

Project Name S		Inspection of AFFF Release Are vironmental Programs Worldwid	Project Number			775303101.0007			
Contract		FA8903-16-D-0027		Task Order			0004		
Installation		Cape Canaveral AFS (CAPEC)		Start Date			05/22/17		
Location ID		MW01001		End Date			05/22/17		
Technician(s)				Jason Hayes	, Jason Drizd				
Sample ID		Sample Date/Time	Sample Depth (ft)	USCS Symbol			Comments/Observations		
CAPEC01-SO-00	11	05/22/17 1405	0 - 0.5	SP			None		
CAPEC01-SO-00	12	05/22/17 1415	3 - 4	SM		None			
Sample Collection Method		Grab		Analysis/I	Method(s)		PFAS (Modified USEPA 537)		
Sample Container Type(s)		4 oz HDPE		Preservative(s)			Ice (4 C)		
Associated Blank Sample	s:						Signature		
		Jan Hz							
Notes:	Name (print):								
remaining borings at AFFF Release Are	A soil sample was also collected from the surface interval (0-0.5') and subsurface interval (3-4') and composited with surface and subsurface soil samples from the remaining borings at AFFF Release Area 1 (MW01002 and MW01003) for laboratory analysis of TOC (Lloyd-Kahn/USEPA Method 9060A), pH (USEPA Method 9045C), and particle size analysis (ASTM D422). The resulting sample IDs for the surface and subsurface soil samples were CAPEC01-(0-1) and CAPEC01-(3-4), respectively.								
QA/QC'd by:	homas W. Hensel	Thomas 2. Hen	ul		QA/QC	C Date:	6/14/2017		

SOIL SAMPLE COLLECTION LOG

Project Name	Site Ins Enviro	spection of AFFF Release Are onmental Programs Worldwid	as e	Project N	umber	775303101.0007 0004		
Contract		FA8903-16-D-0027		Task Orde	ər			
Installation	Ca	pe Canaveral AFS (CAPEC)		Start Date		05/22/17		
Location ID		MW01002		End Date		05/22/17		
Technician(s)				Jason Hayes	, Jason Drizd			
Sample ID		Sample	Sample Depth (ft)	USCS		Comments/Observations		
		Date/Time		Symbol				
CAPEC01-SO-003		05/22/17 1225	0 - 0.5	SP		None		
CAPEC01-SO-004		05/22/17 1230	3 - 4	SM		None		
Samula Callestian Mathed		Grab		Analysia/		PFAS (Modified USEPA 537)		
Sample Collection Method				Analysis/I				
Sample Container Type(s)		4 oz HDPE		Preservat	ive(s)	Ice (4 C)		
Associated Blank Samples:	Signature							
Notes: A soil sample was also collected f	from the surface inte	rval (0-0.5') and subsurface in	nterval (3-4') and com	nposited with su	Irface and subsurface soil	Name (print):		
samples from the remaining borings 9060A), pH (USEPA Method 9045C	s at AFFF Release A C), and particle size a	rea 1 (MW01001 and MW010	003) for laboratory an esulting sample IDs f	alysis of TOC (Lloyd-Kahn/USEPA Method	Jason Hayes		
QA/QC'd by: Tho	omas W. Hensel	Thomas 2. Her	mel		QA/QC Date:	6/14/2017		

SOIL SAMPLE COLLECTION LOG

		Inspection of AFFF Release Are vironmental Programs Worldwid	Project N	umber		775303101.0007			
Contract		FA8903-16-D-0027	Task Order			0004			
		Cape Canaveral AFS (CAPEC)		Start Date	-		05/22/17		
Location ID		MW01003		End Date	-		05/22/17		
Technician(s)				Jason Hayes	, Jason Drizd				
Sample ID		Sample Date/Time	Sample Depth (ft)	USCS Symbol			Comments/Observations		
CAPEC01-SO-0	005	05/22/17 1015	0 - 0.5	SP			None		
CAPEC01-SO-0	005	05/22/17 1020	3 - 4	SM			None		
Sample Collection Method		Grab		Analysis/I	Method(s)		PFAS (Modified USEPA 537)		
Sample Container Type(s)	Sample Container Type(s) 4 oz HDPE				ive(s)		Ice (4 C)		
Associated Blank Sampl	es:	Signature Add Add							
Notes: A soil sample was also collec samples from the remaining bo 9060A), pH (USEPA Method 90	rings at AFFF Releas 045C), and particle siz were (Name (print): Jason Hayes							
QA/QC'd by:	Thomas W. Hensel	Thomas 2. Afine	il		QA	VQC Date:	6/14/2017		

WELL CONSTRUCTION FORMS

amec foster wheeler	WELL CONSTRUCTION FORM								
Project Name:	Site Inspection of AFFF Release Areas Environmental Programs Worldwide	Project Number:	775303101.0007						
Contract Number:	FA8903-16-D-0027	Task Order:	0004						
Installation:	Cape Canaveral AFS (CAPEC)	Location ID:	AFFF Release Area 1						
Drilling Subcontractor:		We	MW01001						
Drilling Personnel:	Todd Ives, Keith Anderson	Start Date:	05/22/17						
Drilling Method:		End Date:	05/22/17						
	DPT	son Hayes, Jason Drizd	MM and a s						
Technician(s)		SUIT RAYON, BRANNE LITES							
Type of Well:	Flush Mount	Protective Casing:							
Measuring Point:	Top of Riser (TOR)	Туре:	SLS						
TOC/TOR Difference (in):	See survey data	Dimensions (in):	NA						
		Stickup (ft):	NA						
		Length (ft):	NA						
Approximate Diameter		Guard Post:	NA						
of Borehole (in):	4	Guard Fost.							
of Dorenoie (m).		Surface Pad:							
Depth to Water (ft):	7	Type:	None						
During Drilling:	7		NA						
and the second se	05/22/17	Length (ft):	NA						
Date:		Width (ft):	NA						
	See development log	Thickness (in):	NA						
Date:	05/22/17	and the second state of th	Sector States						
	2.4	Annular Seal (grout above we							
		Material:	NA						
Hydrologic Unit:	W	Installation Method:	NA						
		Denter its Seals							
		Bentonite Seal:	2.2						
		Manufacturer:							
		Material:	NA						
Water added during		Туре:	NA						
drilling (gal):	None	Installation Method:	NA						
Water removed during		Hydration time (hrs):	NA						
development (gal):	None								
1/5.) 9980 bit		Filter Pack Material:							
		Manufacturer:	Prepack						
		Material:	15						
Top of Bentonite Seal (ft):	NA	Size (Sieve Size):	20/40						
Top of Dentonite Sear (ig.		Installation Method:	Gravity						
	· · · · · ·		None						
T CET Deal (A).	10	Surging time:	none						
Top of Filter Pack (ft):	48								
		Well Casing (Solid Riser Abov	and the second second second second second second second second second second second second second second second						
		Manufacturer:	Silver-Line Enviro-Pure						
Top of Screen Interval (ft):	48	Type/Material:	PVC						
		Length (ft):	5.0						
		Diameter (in):	2.0						
		Well Screen:	The state Franks Dave						
Bottom of Screened Interval (ft):	14.8	Manufacturer:	Silver-Line Enviro-Pure						
		Type/Material:	PVS						
		Diameter (in):	2.0						
Bottom of Filter Pack (ft):	14.8	Length (ft):	10 0						
		Slot Size (in):	0.01						
Bottom of Borehole (ft):	15.0	Slot Type:	Factory Slot						
	2								
		Sump/End Cap:	End cap						
		oumpiene oup.	0.0000000						
	ed temporary well, no sand or bentonite added. VS = PVC Upper/Stainless Steel Lower	Signature:	Jr. An						
Depths and beights are references	to ground surface unless specified TOC.	Name (print):	Jason Hayes						

Wheeler Project Name: Sile Inspection of AFFF Release Areas Environmental Programs WorkWake Project Number: Contract Number: Cape Canward AFG 2027 Task Order: Deptiling Subcontractor: AnDril, In: Well ID: Drilling Subcontractor: AnDril, In: Well ID: Drilling Subcontractor: AnDril, In: Well ID: Drilling Subcontractor: DPT End Date: Techniclan(s) DPT End Date: Type of Well: Flush Meart Protective Casing: Type of Well: Flush Meart Protective Casing: Type of Well: Flush Meart Protective Casing: Type of Well: Flush Meart Start Date: Option Difference (in): See survey data Surface Pad: During Drilling: 052217 Annular Seal (grout abo Mater added during None Material: Installation Methe Hydrologic Unit: W Well Casing (Solid River Material: Top of Bentonite Seal (ift): None Fliter Pack Material: Material: Top of Bentonite Seal (ift): None Start Giver Nateriai: Sta	WELL CONSTRUCTION FORM								
Conduct Nation: Cape Canaveral AFS (CAPEC) Diffing Subcontractor: AnDrift Inc. Diffing Subcontractor: AnDrift Inc. Diffing Subcontractor: AnDrift Inc. Well ID: Star Date: End Date: End Date: End Date: End Date: Top of Well: Top of Reference (in): See Survey data Approximate Diameter of Borehole (in): Date: Date: Date: Date: Date: Top of Bentonite Seal (ff): Top of Filter Pack (ff): End Date: Top of Screen Interval (ff): Top of Screene Interval (ff): Top of Screene Interval (ff): Top of Screene Interval (ff): Top of Screene Interval (ff): Date: Date: Date: Date: Date: Date: Top of Screene Interval (ff): Date: Destituation Methe Star Star Star Star Star Star Star Star	775303101.0007								
Installation: Cape Canswell AFS (CAPEC) Location ID: Drilling Subcontractor: AntORL Inc. Well ID: Drilling Subcontractor: Tod Ives, Keth Andeson Start Date: Drilling Method: DPT End Date: Tod Ives, Keth Andeson Start Date: Fluch Mount Type of Well: Fluch Mount Protective Casing: Measuring Point: Top of BentrORR) Dimensions (in): Start Depth to Water (ft): 6 Type: Date: 0522017 Start Ace Pad: Date: 0522017 None Hydrologic Unit: W Hudrologic Unit: Muster added during drilling (gal): Water added during drilling (gal): None None Top of Bentonite Seal (ft): 4.8 Hydration time (ft): Top of Filter Pack (ft): 4.8 Well Casing (Solid Rise Manufacture:: Type/Material: Bottom of Screene Interval (ft): 14.8 Manufacture:: Type/Material: Bottom of Borehole (ft): 15.0 Start Type: Notes: Prepaded temporary well, no sand or benformer adadd. Signature:	0004								
Drilling Subcontractor: AmDrill, Inc. Well ID: Drilling Method: DPT End Date: Echniclan(s) Identify Method: End Date: Echniclan(s) Top of Riser (TOR) Jason Hayes, Jakon Didd Protective Casing: Type: Dimensions (in): Strikup (ft): G Dimensions (in): Approximate Diameter 4 Surface Pad: of Borehole (in): 4 Surface Pad: Depth to Water (ft): 6 Type: Date: 0522177 Unit Restification Metho Post Development: See development tog Annular Seal (grout abo Material: Material: Material: Material: Material: None Material: Material: None Surface Water: Fop of Bietonite Seal (ft): NA Surface Water: Type/Material: Giscing (Soild Riser Manufacturer: Soften of Screene Interval (ft): 48 Manufacturer: Go of Filter Pack (ft): 14.8 Surging time: Soften of Screene Interval (ft): 14.8 Surging time: Sottom of Boreh	AFFF Release Area 1								
Defining Personnel: DPT End Date: Techniclan(s) DPT End Date: Start Date: Dep of Well: Fush Mount Top of Reer (TOR) Jaton Hayes, Jaton Dito: Type: Difference (in): Bee survey data Protective Casing: Stract Date: Stract Date: Difference (in): Approximate Diameter of Borehole (in): 4 Strace Pad: During Drilling: 6 Type: Length (ft): Date: 05221/7 Annuiar Seal (grout abo Material: Installation Methe Post Development: See development log Material: Material: Installation Methe Bettonite Seal (ft): None Material: Material: Installation Methe Bevelopment (gal): None None Filter Pack Material: Material: Stratilation Methe Softom of Screenel Interval (ft): 48 Well Casing (Solid Riser Manufacturer: Type/Material: Stratilation Methe Softom of Filter Pack (ft): 14.8 Stot Type: Stot Type: Stot Type: Stot Type: Sottom of Borehole (ft): 15.0 15.0 Stot Type:	MW01002								
Prilling Method: DPT End Date: iechniclan(s) Jason Hayes, Jason Dicd Type of Well: Flush Mount Measuring Point: Top of Plaser (TOR) COC/TORD Difference (in): See survey data Approximate Diameter 4 Approximate Diameter 4 During Drilling: 6 During Drilling: 05 Date: 05/22/17 Post Development: See development tog Date: 05/22/17 Post Development: See development tog Opt ing (fil): Material: Material: Manufacturer: Material: Manufacturer: Material: Manufacturer: Material: Manufacturer: Material: Manufacturer: Type: Length (fil): Type: Installation Metho Bentonite Seal (fil): None Filter Pack (fil): 48 Type/Material: Manufacturer: Type/Material: Length (fil): Date: 05/22/17 Soptof Filter Pack (fil): 48	05/22/17								
icechnician(s) Jacon Hayes, Jacon Ditti Vipe of Well: Top of Riser (TOR) feasuring Point: Top of Riser (TOR) OC/TOR Difference (in): See survey data hyperoximate Diameter of Borehole (in): 4 During Drilling: 6 During Drilling: 6 During Drilling: 0 Date: 05/22/17 Post Development: 05/22/17 Annular Seal (grout abo Material: Manufacturer: Material: hydrologic Unit: W Vater added during Infilling (gal): None Yater removed during levelopment (gal): None Top of Bentonite Seal (ft): 4 Sort removed during installation Methe Size (Size Size): Installation Methe Size (Size Size): Installation Methe Size (Size Size): Size (Size Size): Size (Size Size): Installation Methe	05/22/17								
ype of Well: Fush Mourt Income of Reser (TOR) Top of Reser (TOR) OC/TOR Difference (in): See survey data See survey data Sickup (ft): Upproximate Diameter 6 During Drifting: 6 During Drifting: 6 During Drifting: 0 Date: 05/22/17 Date: 05/22/17 Date: 05/22/17 Hydrologic Unit: W Vater added during trifting (gal): None Yater added during trifting (gal): None Yater added during trifting (gal): None Store face fact (ft): None 'op of Bentonite Seal (ft): None 'op of Filter Pack (ft): 48 'op of Screen Interval (ft): 48 'op of Screened Interval (ft): 14.8 Stortion of Borehole (ft): 15.0									
Annular Seal (grout about meter of Borehole (in): Approximate Diameter									
OC/TOR Difference (in): See survey data Upproximate Diameter 4 If Dorehole (in): 4 Depth to Water (ft): 6 During Drilling: 6 Date: 065/22/17 Post Development: See development bg Date: 065/22/17 Annular Seal (grout abo Material: Manufacturer: Hydrologic Unit: W Vester added during Itrilling (gal): None Vester moved during Ievelopment (gal): None Filter Pack (ft): 4 Top of Bentonite Seal (ft): None Filter Pack (ft): 4 Sortom of Screen Interval (ft): 4.8 Sortom of Screened Interval (ft): 14.8 Sortom of Borehole (ft): 15.0 Sortom of Borehole (ft): 15.0 Sump/End Cap: Sump/End Cap:									
upproximate Diameter # Borehole (in):	SLS								
pproximate Diameter Florehole (in): 4 epth to Water (ft): 0 During Drilling: 0 Date: 0 0 0 0 0 0 0 0 0 0 0 0 0	NA								
pproximate Diameter (Borehole (in): 4 epth to Water (ft): 6 During Drilling: 6 Date: 0522/17 Post Development: See development log Date: 0522/17 Ydrologic Unit: W Annular Seal (grout abo Material: Material: ydrologic Unit: W Ater added during rilling (gal): None Ater added during cop of Bentonite Seal (ft): None op of Filter Pack (ft): 48 op of Screen Interval (ft): 48 otom of Screened Interval (ft): 14.8 otom of Filter Pack (ft): 14.8 otom of Borehole (ft): 15.0 Stor Size (in): Stor Size (in): Stor Size (in): Stor Size (in): Stor Size (in): Stor Size (in): otom of Borehole (ft): 15.0 Stor Size (in): Stor Size (in): Stor Size (in): Stor Size (in): Stor Size (in): Stor Size (in): Otom of Borehole (ft): 15.0	NA								
f Borehole (in): 4 epth to Water (ft): 6 During Drilling: 6 Date: 05/22/17 Post Development: See development tog Date: 05/22/17 Post Development: See development tog Date: 05/22/17 Annular Seal (grout abo Material: Installation Metho ydrologic Unit: W Ater added during (illing (gal): None Ater removed during evelopment (gal): None op of Bentonite Seal (ft): NA op of Filter Pack (ft): 48 op of Screen Interval (ft): 48 ottom of Screened Interval (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Borehole (ft): 15.0 Stot Size (in): Stot Size (in): Stot Size (i	NA								
epth to Water (ft): 6 During Drilling: 6 During Drilling: 0 Date: 05/22/17 Post Development: See development tog Date: 05/22/17 Ydrologic Unit: W Annular Seal (grout abo Material: Installation Metho ydrologic Unit: W Ater added during Installation Metho rilling (gal): None Ater removed during None op of Bentonite Seal (ft): NA op of Filter Pack (ft): 48 op of Screen Interval (ft): 48 ottom of Screened Interval (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Borehole (ft): 15.0 ottom of Borehole (ft): 15.0 stor Type: Sump/End Cap: Stor Type: Sump/End Cap: Stor Type: Stor Type:	NA								
epth to Water (ft): 6 During Drilling: 6 Date: 05/22/17 Post Development: See development log Date: 05/22/17 Date: 05/22/17 Annular Seal (grout abo Material: Installation Metho ydrologic Unit: W Vater added during rilling (gal): None /ater removed during evelopment (gal): None op of Bentonite Seal (ft): None op of Filter Pack (ft): 48 op of Screen Interval (ft): 48 ottom of Screened Interval (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Borehole (ft): 15.0 Stort Type: Stort Type: Stort Type: Stort T	12-								
During Drilling: 6 Date: 05/22/17 Post Development: See development log Date: 05/22/17 Nate: 05/22/17 Annular Seal (grout abo Material: Installation Metho bydrologic Unit: W Water added during None Vater added during None Vater added during None vater added during None op of Bentonite Seal (ft): NA op of Filter Pack (ft): 48 op of Screen Interval (ft): 48 bottom of Screened Interval (ft): 14.8 bottom of Filter Pack (ft): 14.8 bottom of Borehole (ft): 15.0 Veltar: Stor Size (in): Stor Size (in): Stor Size (in): </td <td></td>									
Date: 05/22/17 Post Development: See development log Date: 05/22/17 Vidth (ft): Thickness (in): Annular Seal (grout abo Material: Installation Metho ydrologic Unit: W Vidth (ft): Installation Metho Vidth (ft): None After added during rilling (gal): None After removed during evelopment (gal): None op of Bentonite Seal (ft): NA op of Filter Pack (ft): 48 op of Screen Interval (ft): 48 ottom of Screened Interval (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Borehole (ft): 15.0 Stor Size (in): Stor Size (in): Stor Size (in): Stor Type: Stor Size (in):	None								
Post Development: See development log Thickness (in): Date: 05/22/17 Annular Seal (grout abo Material: Installation Metho Bentonite Seal: Mater added during rilling (gal): None Atter added during rilling (gal): None Atter added during evelopment (gal): None op of Bentonite Seal (ft): NA op of Filter Pack (ft): 4.8 op of Screen Interval (ft): 4.8 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Borehole (ft): 15.0 star (ft): 15.0	NA								
Date: 05/22/17 ydrologic Unit: W Annular Seal (grout abo Material: ydrologic Unit: W Ater added during rilling (gal): None Ater removed during evelopment (gal): None op of Bentonite Seal (ft): None op of Filter Pack (ft): 48 op of Screen Interval (ft): 48 optom of Screened Interval (ft): 14.9 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 15.0 ottom of Borehole (ft): 15.0 stort Type: Sump/End Cap: Stort Type: Signature:									
Annular Seal (grout abo Material: Installation Method Material: Installation Method Bentonite Seal: Manufacturer: Material: Type: Installation Method Bentonite Seal: Manufacturer: Material: Type: Installation Method Hydration time (h Hydration time (h Hydration time (h Hydration time (h) op of Bentonite Seal (ft): NA op of Filter Pack (ft): 48 op of Screen Interval (ft): 48 ottom of Screened Interval (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Borehole (ft): 15.0 Stor Size (in): Stor Size (in): Stor Type: Stor Type: Stor Type: Stor Type: Stor Type: Stor Type:	NA								
lydrologic Unit: W Water added during rilling (gal): None Vater added during rilling (gal): None Vater removed during evelopment (gal): None op of Bentonite Seal (ft): NA op of Filter Pack (ft): 48 op of Screen Interval (ft): 48 vottom of Screened Interval (ft): 14.8 vottom of Filter Pack (ft): 14.8 vottom of Filter Pack (ft): 14.8 vottom of Borehole (ft): 15.0 vottom of Borehole (ft): 15.0									
ydrologic Unit: W Installation Method Water added during rilling (gal): None Bentonite Seal: Manufacturer: Material: Vater removed during evelopment (gal): None Filter Pack Material: Manufacturer: Material: op of Bentonite Seal (ft): NA Filter Pack Material: Manufacturer: Material: op of Filter Pack (ft): 48 Well Casing (Solid Riser Manufacturer: op of Screen Interval (ft): 48 Well Casing (Solid Riser Manufacturer: tottom of Screened Interval (ft): 14.8 Manufacturer: tottom of Filter Pack (ft): 14.8 Well Screen: Manufacturer: Type/Material: Diameter (in): Usets: Type/End Cap: Sump/End Cap:									
Vater added during rilling (gal): Vater removed during evelopment (gal): op of Bentonite Seal (ft): op of Bentonite Seal (ft): op of Filter Pack (ft): op of Screen Interval (ft): bottom of Screened Interval (ft): tottom of Filter Pack (ft): tottom of Filter Pack (ft): tottom of Filter Pack (ft): tottom of Filter Pack (ft): tottom of Borehole (f	NA NA								
Aater added during rilling (gal): None Aater removed during evelopment (gal): None op of Bentonite Seal (ft): None op of Filter Pack (ft): 48 op of Screen Interval (ft): 48 ottom of Screened Interval (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 15.0 ottom of Borehole (ft): 15.0	od: NA								
Aater added during rilling (gal): None Aater removed during evelopment (gal): None op of Bentonite Seal (ft): None op of Filter Pack (ft): 48 op of Screen Interval (ft): 48 ottom of Screened Interval (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 15.0 ottom of Borehole (ft): 15.0									
Aater added during rilling (gal): None Aater removed during evelopment (gal): None op of Bentonite Seal (ft): NA op of Filter Pack (ft): 48 op of Screen Interval (ft): 48 ottom of Screened Interval (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Borehole (ft): 15.0 Stot Size (in): Stot Size (in): Stot Size (in): Stot Type:	NA								
Vater added during rilling (gal): None Vater removed during evelopment (gal): None op of Bentonite Seal (ft): NA op of Bentonite Seal (ft): A8 op of Filter Pack (ft): 48 vell Casing (Solid Riser Manufacturer: Type/Material: Length (ft): Diameter (in): Vell Screen: Manufacturer: Type/Material: Length (ft): Slot Size (in): Slot Type: Sump/End Cap: None	NA								
Initiality (gal): None Vater removed during levelopment (gal): None Top of Bentonite Seal (ft): NA Top of Filter Pack (ft): 48 Top of Screen Interval (ft): 48 Sottom of Screened Interval (ft): 14.8 Bottom of Filter Pack (ft): 14.8 Sottom of Filter Pack (ft): 14.8 Bottom of Borehole (ft): 15.0 Stotes: Pre-packed temporary well, no sand or bentonite added.	NA								
Vater removed during levelopment (gal): None top of Bentonite Seal (ft): NA top of Filter Pack (ft): 48 top of Screen Interval (ft): 48 None Well Casing (Solid Riser Manufacturer: Material: Size (Sieve Size): Installation Method Surging time: Well Casing (Solid Riser Manufacturer: Type/Material: Length (ft): Diameter (in): Well Screen: Manufacturer: Type/Material: Length (ft): Diameter (in): Slot Size (in): Slot Size (in): Slot Size (in): Slot Size (in): Slot Size (in): Slot Type: Sump/End Cap: None									
Intervelopment (gal): None Filter Pack Material: Manufacturer: Material: Size (Sieve Size): Installation Method Surging time: Well Casing (Solid Rised Manufacturer: Type/Material: Length (ft): Bottom of Screened Interval (ft): Bottom of Filter Pack (ft): 14.8 Bottom of Filter Pack (ft): 14.8 Bottom of Filter Pack (ft): 14.8 Bottom of Filter Pack (ft): 14.8 Bottom of Filter Pack (ft): 14.8 Bottom of Filter Pack (ft): 15.0 Sump/End Cap: Sump/End Cap: None									
Filter Pack Material: Manufacturer: Material: Size (Sieve Size): Installation Method Surging time: Well Casing (Solid Riser Manufacturer: Type/Material: Length (ft): Diameter (in): Bottom of Screened Interval (ft): Sottom of Filter Pack (ft): Bottom of Filter Pack (ft): Sottom of Borehole (ft): H4.8 Signature: Neter: Neter: Pre-packed temporary well, no sand or bentonite added. Filter Pack Material: Manufacturer: Type/Material: Length (ft): Slot Size (in): Slot Type: Sump/End Cap:	ns).								
Top of Bentonite Seal (ft): Top of Bentonite Seal (ft): Top of Filter Pack (ft): Top of Screen Interval (ft): Bottom of Screened Interval (ft): Bottom of Filter Pack (ft): Bottom of Filter Pack (ft): Bottom of Filter Pack (ft): Bottom of Borehole (ft): Bottom of Boreho									
Top of Bentonite Seal (ft): Top of Filter Pack (ft): Top of Filter Pack (ft): Top of Screen Interval (ft): Bottom of Screened Interval (ft): Bottom of Filter Pack (ft): Bottom of Filter Pack (ft): Bottom of Filter Pack (ft): Bottom of Filter Pack (ft): Bottom of Borehole (ft): Bottom of Boreho	Prepack								
rop of Bentonite Seal (ft): NA Size (Sieve Size): rop of Filter Pack (ft): 48 Well Casing (Solid Riser Manufacturer: Type/Material: Length (ft): rop of Screen Interval (ft): 48 Well Screen: Bottom of Screened Interval (ft): 14.8 Bottom of Filter Pack (ft): 14.8 Bottom of Filter Pack (ft): 14.8 Bottom of Filter Pack (ft): 15.0 Bottom of Borehole (ft): 15.0 Stotes: Pre-packed temporary well, no sand or bentonite added.	18								
iop of Filter Pack (ft):									
Top of Filter Pack (ft): 48 Top of Screen Interval (ft): 48 Sottom of Screened Interval (ft): 48 Sottom of Screened Interval (ft): 14.8 Sottom of Filter Pack (ft): 14.8 Sottom of Filter Pack (ft): 14.8 Sottom of Filter Pack (ft): 14.8 Sottom of Filter Pack (ft): 14.8 Sottom of Borehole (ft): 15.0 Well Screen: Slot Size (in): Slot Size (in): Slot Type: Slot Type: Sump/End Cap:									
op of Filter Pack (ft): 48 Well Casing (Solid Riser Manufacturer: Type/Material: Length (ft): Diameter (in): bottom of Screened Interval (ft): 14.8 bottom of Filter Pack (ft): 14.8 bottom of Filter Pack (ft): 14.8 bottom of Borehole (ft): 15.0 Stottom of Borehole (ft): 15.0 Stottom of Borehole (ft): 15.0 Stottom of Borehole (ft): 15.0	None								
op of Nucl Y dot (iv): 48 op of Screen Interval (ft): 48 Sottom of Screened Interval (ft): 14.8 Sottom of Filter Pack (ft): 14.8 Sottom of Borehole (ft): 15.0 Well Casing (Solid Riser Manufacturer: Type/Material: Diameter (in): Length (ft): 14.8 Sottom of Filter Pack (ft): 15.0 Slot Size (in): Slot Type: Sump/End Cap:	None								
op of Screen Interval (ft): 48 Manufacturer: Type/Material: Length (ft): Diameter (in): Well Screen: Manufacturer: Type/Material: Diameter (in): Length (ft): Diameter (in): Length (ft): Slot Size (in): Slot Size (in): Slot Type: Sump/End Cap:	Above Screen):								
op of Screen Interval (ft): 48 Type/Material: Length (ft): Diameter (in): Well Screen: Manufacturer: Type/Material: Diameter (in): Diameter (in): Length (ft): Slot Size (in): Slot Size (in): Slot Size (in): Slot Size (in): Slot Type: Sump/End Cap:	Silver-Line Enviro-Pure								
ottom of Screened Interval (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Borehole (ft): 15.0 Veil Screen: Manufacturer: Type/Material: Diameter (in): Length (ft): Slot Size (in): Slot Type: Sump/End Cap: Otes: Pre-packed temporary well, no sand or bentonite added.	PVC								
ottom of Screened Interval (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Borehole (ft): 15.0 ottom of Borehole (ft): 15.0 Slot Size (in): Slot Type: Sump/End Cap: Signature:	5.0								
ottom of Screened Interval (ft): 14.8 ottom of Filter Pack (ft): 14.8 ottom of Borehole (ft): 15.0 Well Screen: Manufacturer: Type/Material: Diameter (in): Length (ft): Slot Size (in): Slot Type: Sump/End Cap: Otes: Pre-packed temporary well, no sand or bentonite added.	2.0								
ottom of Screened Interval (ft): 14.8 Manufacturer: Type/Material: Diameter (in): Length (ft): Slot Size (in): Slot Size (in): Slot Size (in): Slot Type: Sump/End Cap: otes: Pre-packed temporary well, no sand or bentonite added. Signature:	2.0								
tottom of Filter Pack (ft): 14.8 tottom of Borehole (ft): 15.0 Type/Material: Diameter (in): Length (ft): Slot Size (in): Slot Size (in): Slot Type: Sump/End Cap: Sump/End Cap: Signature:									
bottom of Filter Pack (ft): 14.8 bottom of Borehole (ft): 15.0 bottom of Borehole (ft): 15.0 bottom of Borehole (ft): 15.0 bottom of Borehole (ft): 5lot Size (in): 5lot Type: 5 Sump/End Cap: 5 bottom: 5ignature: 5i	Silver-Line Enviro-Pure								
Sottom of Filter Pack (ft): 14.8 Length (ft): Slot Size (in): Slot Size (in): Slot Type: Sump/End Cap: Stotes: Pre-packed temporary well, no sand or bentonite added.	PVS								
In the second se	2.0								
Nottom of Borehole (ft): 15.0 Slot Type:	10 0								
lotes: Pre-packed temporary well, no sand or bentonite added. Signature:	0 01								
lotes: Pre-packed temporary well, no sand or bentonite added. Signature:	Factory Slot								
otes: Pre-packed temporary well, no sand or bentonite added. Signature:									
Pre-packed temporary well, no sand or bentonite added. Signature:	End cap								
	Jr. Ap								
Pepths and heights are referenced to ground surface unless specified TOC. Name (print):	Jason Hayes								

amec fosler wheeler	WELL CONSTRUCTION FORM							
Project Name:	Site Inspection of AFFF Release Areas Environmental Programs Worldwide	Project Number:	775303101.0007					
Contract Number:	FA8903-16-D-0027	Task Order:	0004					
Installation:	Cape Canaveral AFS (CAPEC)	Location ID:	AFFF Release Area 1					
Drilling Subcontractor:	AmDrill, Inc.	Well ID:	MW01003					
Drilling Personnel:	Todd Ives, Keith Anderson	Start Date:	05/22/17					
Drilling Method:	DPT	End Date:	05/22/17					
Technician(s)	1997, 659	Jason Hayes						
rechincian(s)								
Type of Well:	Flush Mount	Protective Casing:						
Measuring Point:	Top of Riser (TOR)	Туре:	NAO					
TOC/TOR Difference (in):	See survey data	Dimensions (in):	NA					
20 - 20	5.0	Stickup (ft):	NA					
		Length (ft):	NA					
Approximate Diameter		Guard Post:	NA					
of Borehole (in):	4							
		Surface Pad:						
Depth to Water (ft):	6	Туре:	NA					
During Drilling:	6	Length (ft):	NA					
Date:	05/22/17	Width (ft):	NA					
	See development log	Thickness (in):	NA					
Date:	05/22/17	The statement of the second						
		Annular Seal (grout above w						
		Material:	NA					
Hydrologic Unit:	W	Installation Method:	NA					
		Bentonite Seal:						
		Manufacturer:	NA					
		Material:	NA					
Water added during		Туре:	NA					
drilling (gal):	None	Installation Method:	NA					
Water removed during		Hydration time (hrs):	NA					
development (gal):	None		li					
		Filter Pack Material:						
		Manufacturer:	Prepack					
		Material:	15					
Top of Bentonite Seal (ft):	NA	Size (Sieve Size):	20/40					
		Installation Method:	Gravity					
	`	Surging time:	None					
Top of Filter Pack (ft):	48							
		Well Casing (Solid Riser Ab	ove Screen):					
	12.1	Manufacturer:	Silver-Line Enviro-Pure					
Top of Screen Interval (ft):	48	Type/Material:	PVC					
		Length (ft):	5.0					
		Diameter (in):	2.0					
	>	Well Screen:						
Bottom of Screened Interval (ft)	: 14.8	Manufacturer:	Silver-Line Enviro-Pure					
Dottom of Screened Interval (it)		Type/Material:	PVS					
			2.0					
Bottom of Filter Pack (ft):	14.8	Diameter (in):	10.0					
Bottom of Filler Fack (it).	14.0	Length (ft): Slot Size (in):	0.01					
Bottom of Borehole (ft):	15.0	Slot Type:	Factory Slot					
bottom of borenoie (it).		Side Type.						
		Sump/End Cap:	End cap					
	ked temporary well, no sand or bentonite added. 2VS = PVC Upper/Stainless Steel Lower	Signature:	Jr. An					
Depths and heights are reference All elevations are referenced to M	d to ground surface unless specified TOC. SL (NAVD 88).	Name (print):	Jason Hayes					
QA/QC'd by: Thomas W. Her	1364	QA/	QC Date: 6/14/2017					

WELL DEVELOPMENT LOGS

WELL DEVELOPMENT LOG

Project Name:	Site Inspection of AFFF Release Areas Environmental Programs Worldwide FA8903-16-D-0027					Project N	umber:			775303101.0007	
Contract:						Task Orde				0004	
Installation:		Cape Canaveral AFS (CAPEC)						ted/Date Co			5/22/2017
Well ID:				MW0100				oth to Water			6 36
Measuring Point Development Me				Top of Ris PUMPE				th of Well (f	t): Purging (ft):		15.0 6.4
Total Volume Pu				50	U			Volume (gal			1.4
Technician(s):	ngeu (gai).			Jason Dri	zd			Volumes (ga			4.3
						Specific		(g			
Date/Time	Intake Depth (feet)	Water Level (feet)	Rate (GPM)	Temp. (°C)	pH (units)	Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Cum. Volume (gal.)	Comments/Observations During Purging (color, sediment, etc.)
05/22/17 1405			2.5								Pumping Started
05/22/17 1426	15	6.57	2.5	28.76	7.33	6 20	1.32	-62.8	9.63	25	Clear
05/22/17 1432	15	6.51	2.5 2.5	28 69	7.35 7.29	6 31	1.44	-67.7	8.12	37.5	Clear
05/22/17 1437	15	6.47	2.0	28.71	7.29	6 33	1.34	-64.9	8.01	50.0	Clear
	ļ										
				ļ			+				
	1				1				1		
									ł		
			ļ	L				ļ			
	<u> </u>										
							-				
Instruments (N	anufacturer	Model a	nd Serial	No.):							
Equipment Calibrate		would, a		es		Calibrated Within	Criteria (Y/N)				Yes
						bidity Meter, Water lach 2100Q 15060 YSI 556 MPS 061	Quality Meter C041690,				
Calculations:											Signature:
											0.3
V = Volume (gal/ft) Π = 3.14 R = well radius (ft) =											
Notes:											Name (print)
					None						Jason Drizd
QA/QC'd by: Thomas W. Hensel Thomas D. Ifenael QA/QC Date:										6/14/2017	

WELL DEVELOPMENT LOG

Project Name:					F Release Are		Project N	umber:			775303101.0007			
Contract:				A8903-16-D			Task Ord				0004			
Installation:			Cape C		FS (CAPEC)			ted/Date Co	•		5/22/2017			
Well ID:				MW0100				oth to Water			5 58			
Measuring Point				Top of Ris				oth of Well (f			15.0			
Development Me				PUMP		<u> </u>			Purging (ft):		5 58			
Total Volume Pu	irged (gai):			50 Jason Dri	-			Volume (ga			4.6			
Technician(s):			1	Jason Dr	20	Specific	3 Casing	Volumes (ga	ai):					
Date/Time	Intake Depth (feet)	Water Level (feet)	Rate (GPM)	Temp. (°C)	pH (units)	Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Cum. Volume (gal.)	Comments/Observations During Purging (color, sediment, etc.)			
05/22/17 1251			2.5								Pumping Started			
05/22/17 1306	15	5.80	2.5	27 54	7.82	2 98	3.62	101 0	17.1	25	Clear			
05/22/17 1311	15	5.78	2.5	27 23	7.64	2 96	2.56	105 5	3.99	37.5	Clear			
05/22/17 1316	15	5.74	2.5	27 25	7.47	2 94	3.21	109 0	1.89	50	Clear			
Instruments (N		Model, a												
Equipment Calibrate	ed (Y/N):		Y	es		Calibrated Within					Yes			
				Tur		Water Quality Met Hach 2100Q 15060 YSI 556 MPS 06P	C041690,	ersible Pump						
Calculations:											Signature:			
Saturated well c	asing volume:	V= П(R^2	2)H*7.48 ga	al/ft^3										
V = Volume (gal/ft) $\Pi = 3.14$ R = well radius (ft) = H = height of water		n)/12 (in/ft))	/2)			=∏ * (2	0 (in)/12 (in/ft	2)H*7.48 gal/ft/ ;))/2)^2 * 9.42 * : 1.5 gal.			Phy			
Notes:					None						Name (print) Jason Drizd			
QA/QC'd by:	Thomas W. H	lensel	The	mas 2.	Hensel			C	QA/QC Date:		6/14/2017			

WELL DEVELOPMENT LOG

Project Name:					F Release Are		Project N	umber:			775303101.0007		
Contract:			F	A8903-16-D	-0027		Task Orde	er:			0004		
Installation:			Cape C		FS (CAPEC)			ted/Date Co			5/22/2017		
Well ID:				MW0100				oth to Water			5.47		
Measuring Point				Top of Cas				th of Well (f			15.0		
Development Me				PUMP					Purging (ft):		5.45		
Total Volume Pu	irged (gal):			56				Volume (ga			1.6		
Technician(s):				Jason Dri	zd		3 Casing	Volumes (g	al):		4.7		
Date/Time	Intake Depth (feet)	Water Level (feet)	Rate (GPM)	Temp. (°C)	pH (units)	Specific Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Cum. Volume (gal.)	Comments/Observations During Purging (color, sediment, etc.)		
05/22/17 1141			2.5			· · · · ·			1		Pumping Started		
05/22/17 1149	15	5.64	2.5	29 29	8.01	3 88	2.47	115 0	37.6	12.5	Clear		
05/22/17 1154	15	5.67	2.5	27 99	7.86	3 07	2.16	103.7	8.70	25	Clear		
05/22/17 1203	15	5.70	2.5	27.47	7.76	3 05	2.52	95.3	42.0	40	Clear, surged		
05/22/17 1210	15	5.70	2.5	26 89	7.62	3 00	1.85	93.2	2.48	56	Clear		
In a true on ta /M		Madala	nd Carial	No. h									
Instruments (N		wodel, a		-							Vee		
Equipment Calibrate	ed (Y/N):		ř	'es		Calibrated Within	. ,				Yes		
				Tur		Water Quality Met lach 2100Q 15060 YSI 556 MPS 06P	CO41690,	ersible Pump					
Calculations:											Signature:		
Saturated well c	asing volume:	V= Π(R^2	?)H*7.48 ga	al/ft^3									
V = Volume (gal/ft) $\Pi = 3.14$ R = well radius (ft) = H = height of water		n)/12 (in/ft))	/2)			= Π * (2	0 (in)/12 (in/ft	!)H*7.48 gal/ft/))/2)^2 * 9.53 * 1.6 gal.			M		
Notes:											Name (print)		
					None						Jason Drizd		
QA/QC'd by:	Thomas W. H	lensel	E.J.	homas 2	(Afenses	l		C	QA/QC Date:		6/14/2017		

APPENDIX C-8

WATER QUALITY SAMPLING INSTRUMENT CALIBRATION FORMS

This page intentionally left blank.

			WA	TER QUA	LITY SAMPLING		UMENT (FION F	ORM		amec foster wheeler		
Project Name		Site	Inspection of	of AFFF Release	Areas Environmental Prog	grams Worldw	ide	Project	Number		77530	03101.0007		
Contract		FA	.8903-16-D-(0027	Task Order	0004		- Date		-	05/22/17			
Installation				Cape Can	averal AFS (CAPEC)			Calibra	tion Start T	ime	10:15			
Sample Technic	cian(s)				Jason Drizd			Calibra	tion End Ti	me -		10:54		
					Reading	s Before Ca	alibration							
Date	Time (24hr)	Temperature (°C)	pH (SU)	Turbidity (NTUs)	Specific Electrical Conductance (mS/cm)	D.O. (mg/L)	Salinity (%)	ORP/Eh (mV)	Baron Pres (mm	sure	Co	mments		
			4 00	N/A										
05/22/17	1015	N/A	6 80	N/A	1.12	N/A	N/A	185 8	N	/A		None		
			9 62	N/A N/A	_									
					Reading	gs After Ca	libration							
Date	Time (24hr)	Temperature (°C)	pH (SU)	Turbidity (NTUs)	Specific Electrical Conductance (mS/cm)	D.O. (mg/L)	Salinity (%)	ORP/Eh (mV)	Baron Pres (mm	sure	Co	mments		
			4 00	9.58	(IIIS/CIII)				(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	rig)				
05/22/17	1054	N/A	7 01	20.2	1.00	8.21	N/A	200 0	N	/ A		None		
00/22/11	1004	1073	9 93	99.4		0.21	1977	2000		~				
			9 93	792										
Calibration Ma		d: Calibration Standa	ards		Specific Electrical Cond		ity, Dissolved C RP) Calibration		Oxidation		Turbidity Sta	andards		
Standard	Cal. Sta	ndard Lot #	Expi	ration Date	Standard	•	ndard Lot #	Expiration	Date	Standard	Cal. Standard Lot #	Expiration Date		
pH (4)	70	GB162	()2/28/19	Spec. Conductance	7G	B161	02/28/*	18	10	N/A	09/30/17		
pH (7)	70	GB164	()2/28/19	Salinity	١	N/A	05/22/1	17	20	N/A	09/30/17		
pH (10)	70	GB166	()2/28/19	D.O.		N/A	05/22/1	17	100	N/A	08/31/17		
					ORP	7G	C226	12/31/1	17	800	N/A	09/30/17		
Instruments (I Water Quality N Turbidity Meter Calibrated Withir	leter	Model, and Seria Manufacture YSI 556 I Hach 21	er/Model	Serial No 06K1082AL 14070C033883 Yes	Notes:		N/A			Signature		M		
If No, Provide Ex			NA		1					Name (pri	nt):	Jason Drizd		
QA/QC'd by:		Thomas W. Hensel	l	Thomas	, 2. Hensel				QA	/QC Date:	6/	14/2017		

			WA	TER QUA	LITY SAMPLING		UMENT (CALIBRA	FION F	ORM		amec foster wheeler	
Project Name		Site	Inspection of	of AFFF Release	Areas Environmental Prog	grams Worldw	vide	Project	Number		77530	03101.0007	
Contract		FA	.8903-16-D-(0027	Task Order	0004		- Date		-	0:	5/24/17	
Installation				Cape Can	averal AFS (CAPEC)			Calibra	tion Start T	ime	0641		
Sample Technic	cian(s)				Jason Drizd			Calibra	tion End Ti	me		0656	
					Reading	s Before Ca	alibration						
Date	Time (24hr)	Temperature (°C)	pH (SU)	Turbidity (NTUs)	Specific Electrical Conductance (mS/cm)	D.O. (mg/L)	Salinity (%)	ORP/Eh (mV)	Baron Pres (mm	sure	Co	mments	
			4.18	N/A					, ,	/			
05/24/17	0641	N/A	6.78	N/A	0.992	N/A	N/A	190.1	N	/A		None	
			10.35	N/A N/A	-								
					Deedin		libuatian						
		-			Specific Electrical	gs After Ca	1	000/51	Baron	netric			
Date	Time (24hr)	Temperature (°C)	pH (SU)	Turbidity (NTUs)	Conductance (mS/cm)	D.O. (mg/L)	Salinity (%)	ORP/Eh (mV)	Pres (mm		Co	mments	
			4 00	9.98	4								
05/24/17	0655	N/A	7 00	20.2	1.000	8.22	N/A	200 0	N	/A		None	
			10.06	799	-								
Calibration Ma	aterials Recor	d:	l			1	-	•		· · · ·			
	рН	Calibration Standa	ards		Specific Electrical Cond Reduction		ity, Dissolved C RP) Calibration		Oxidation		Turbidity Sta	andards	
Standard	<u>Cal. Sta</u>	ndard Lot #	Expi	ration Date	Standard	<u>Cal. Star</u>	ndard Lot #	Expiration	Date	Standard	Cal. Standard Lot #	Expiration Date	
pH (4)		GB162)2/28/19	Spec. Conductance		B161	02/28/		10	NA	09/30/17	
pH (7)		GB164)2/28/19	Salinity		N/A	05/24/		20	NA	09/30/17	
pH (10)	70	GB166	()2/28/19	D.O. ORP		N/A C226	05/24/ ⁻ 12/31/ ⁻		100 800	NA	08/31/17	
Instruments (I	Manufacturer.	Model, and Seria	al No.):		Notes:	76	0.220	12/31/	17	800	NA	09/30/17	
Water Quality M Turbidity Meter	Neter	Manufacture YSI 556 I Hach 21	er/Model	Serial No 06K1082AL 15060C041690 Yes	-		None			Signature) July	
If No, Provide Ex	xplanation:		NA		1					Name (pri	nt):	Jason Drizd	
QA/QC'd by:		Thomas W. Hensel	I	Thomas 2	(Hensel				QA	QC Date:	6/	14/2017	

APPENDIX C-9

GROUNDWATER SAMPLING LOGS

This page intentionally left blank.

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE NAME:		Сар				SITE LOCATION:						AFFF F	AFFF Release Area 1							
WELL NO:		MW	/01001			S	AMPLE I	D:		C/	APEC01	I-GW	/-001		DATE:			05/2	4/17	
							-		URGING D											
WELL DIAMETE	2		NG DIAM	1/4			5		EN INTERV	15				DEP 6.34	TH (feet):	PURGE	PUMP	TYPE OF	R BAILER	:
(only fill out if ap							IC DEPT	нто	WATER) >	X WEL	L CAP	ACIT	Y							
	0.34 feet) X 0.08	-			-		NG CAP	ACITY	Х	TUBING	3 LENG	TH)	+ FLOW CE	ELL V	OLUME					
(only fill out if ap				=												gollo				
INITIAL PUMP (OR TUBING DEPT	H IN WELL	FIN		gallor OR TUE	BING DEP			/foot X eet):	PURG	ING NIT		ED AT:		gallons = PURGING END	gallo ED AT:		VOLUM		D (liters):
	VOLUME	CUN	4.0	1		8						0930	J		1020			1	25	
TIME	VOLUME PURGED ({Purging- Volume])	VOL PUR (lite	UME GED	PURGE (mL/		DEPTH WATE (feet)	R (st	pH andar units)	TEMP. (C)		COND. nS/cm)		DISSOLV OXYGE (mg/L)	N	ORP (mV)		BIDITY FUs)	CO	LOR	ODOR
0938	4	4		50		6.34		.60	28.13		0.649		0.16		-116.6		8.8	-	ear	NA
0946	8	1		50		6.34		.38	28.35		0.651		0.17		-121.2		8.0	-	ear	NA
0954	12	2		50		6.34 6.34		'.22 '.13	28.39 28.37		D.660 D.660	_	0.18		-125.3		.84 .39	-	ear ear	NA
1002	16 20	4		50		6.34		.13 .10	28.35		0.657	_	0.37		-129.0		.39	-	ear	NA
1018	20	8		50		6.34		.10 .09	28.44		0.659	_	0.40		-137.3		.27	-	ear	NA
													-							
				1																
												_								
												_						-		
												_								
												_								
						Final Val	ues 7	.09	28.44	(0.659		0.44		-137.3	3.	.27			
WELL CAPACI	TY (Gallons Per F	oot): 0.75	" = 0.02;	1" = 0.	.04; 1	.25" = 0.0		= 0.16			" = 0.65	5;	5" = 1.02;	6"		= 5.88				
TUBING INSIDE	E DIA. CAPACITY	(Gal./Ft.):	1/8" = 0.	0006;	3/16" = (0.0014;	1/4" = 0.	0026;	5/16" =	0.004;	3/8"	' = 0.	.006; 1/2	2" = 0		= 0.016				
PURGING EQU	IPMENT CODES:	B = Ba	iler;	BP = Bla	dder Pu	mp; E	SP = Ele		Submersibl		p; I	PP =	Peristaltic	: Pum	p; O = Oti	ner (Spe	cify)			
SAMPLED BY (PRINT) / AFFILIAT	ION:			SAMPLI	ER(S)		S	AMPLING D	JATA				SAME	PLING		SA	MPLING		
	Jason D	rizd				URE(S):	\mathcal{F}	X							ATED AT:			IDED AT:		
	Amec Foster	Wheeler			TURING		v	10							1020				1026	
PUMP OR TUBI WELL (feet):	ING DEPTH IN		8		TUBING MATER				HDPE				FIELD-FIL1			0	FILT	ER SIZE		NA
FIELD DECONT		PUMP		No	CODE:	TUBING:				No			Filtration E		ICATE:			CAPEC	ia -FD-GW-(01
	IPLE CONTAINER					100.110.		MPLE	PRESERVA								SAMPI		1	E PUMP FLOW
SAMPLE ID	# CONTAINERS	MAT.	VOL	JME	PF	RESERVAT	TIVE		TOTAL			F	INAL		NDED ANALY		EQUIP	MENT		RATE
CODE		CODE HDPE	12			USED		A	DDED IN F		,		pH Recorded	DEA		07)	COE		(mL	per minute)
MW01001	2	HUPE	12	:5		Ice (4 C	•)		NA			NOLI	Recorded	PFA	AS (Mod. EPA 5	37)	AP	٢		250
								+			-+									
REMARKS:	1	I			I			1											I	
										None										
MATERIAL		mber C'		- 01 7	lee	UDDE	Ulat 2		abustic 1		DDC		Der - 16	a.h **	ulanc: PF	- D - 1				
MATERIAL CO		mber Glas cone; T		Clear G = O = O	ilass; ther (Sp		nign Der	isity F	olyethylen	ie; L	UPE =	LOW	Density Po	oryeth	iyiene; PP	= Polypr	opylen	е;		
SAMPLING EQ	UIPMENT CODES		= After (TI = Revers					Bailer Straw	; BP = I Method (Tu	Bladdei Jbing G					Submersible P r (Specify)	ump;				
NOTES:	1. The above do									_	-				••					
	2. <u>STABILIZATIC</u> pH: + 0.2 units T greater) Turbidit	emperatur	e: + 0.2 o	C Specifi	ic Cond	uctance:	+ 5% Dis	solve	d Oxygen:	all read); optiona	ally, + 0.	.2 mg/L oi	r + 10% (v	vhichever is
QA/QC'd by	Thomas W. He	nsel	The	mas 2	(Ifens	ul										QA/Q	C Date		6/14/2	2017

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE NAME:		Ca	pe Canave	ral AFS (CAPEC)			SITE LOCATION: AFFF Release Area 1										
WELL NO:		MV	V01002			SA	AMPLE ID:		CA	PEC01-G	W-002		DATE:			05/24	/17	
								PURGING	DATA									
WELL DIAMETE	ER (inches): 2	TUB	ING DIAM	ETER (in 1/4	ches):		WELL SC 5	REEN INTER	VAL DEP 15	TH: STA	ATIC WATER	DEPTH (fe 5.52	et):	PURGE	PUMP -	TYPE OR PF		
	PURGE: 1 WEL	L VOLUM	E = (TOTA	AL WELL	DEPTH	- STATI	C DEPTH T	O WATER)	X WEL	L CAPAC	ITY							
(only fill out if ap = (15.0 feet – 5	plicable) 5.52 feet) X 0.08	2 gallons/fg	oot X 3.7	85 liters/c	allon =	5.9 liters												
	OLUME PURGE:	-			-		IG CAPAC	TY X	TUBING	LENGTH	I) + FLOW CE	ELL VOLUM	E					
(only fill out if ap	plicable)																	
INITIAL PUMP (OR TUBING DEPT	TH IN WELL	FIN		gallor	ns + (BING DEPT		(feet):	PURGI	feet NG NITIA	-	gallons		gallon			PURGE) (liters):
z \	7		-		011101	7		(1001).	i ortor		28	1 ontoi	1108	LD MI.	TOTAL	VOLONIL	21	5 (mor5).
	VOLUME	CUI	MUL.			DEPTH 1	ГО рН				DISSOLV	ED						
TIME	PURGED ({Purging- Volume])	PUR	UME GED ers)	PURGE (mL/		WATEF (feet)				OND. S/cm)	OXYGE (mg/L)	N (r	nV)	TURB (NT		COL	OR	ODOR
1036	4		4	50	00	5.52	7.60	26.62	0	.324	0.16	-4	3.5	49	.8	Cle	ar	NA
1042	8	1	2	50	00	5.52	7.57	26.95	0	.320	0.87	-	4.9	56	.2	Cle	ar	NA
1050	12	2	24	50	00	5.52	7.58	26.88	0	.317	0.97	-3	9.9	8.4	49	Cle	ar	NA
1058	16	-	10	50		5.52	7.60	_	-	.317	1.01		3.8	3.		Cle		NA
1106	20	6	60	50	00	5.52	7.60	27.02	0	.315	1.06	-1	5.0	3.	08	Cle	ar	NA
																	\rightarrow	
				-				_				_					-+	
									+								\rightarrow	
								-	+									
																	\rightarrow	
							_										\rightarrow	
	TY (Gallons Per F	oot): 0.78	s" = 0.02·	1" = 0	04. 1	Final Valu				.315 ' = 0.65;	1.06 5" = 1.02;		5.0	3.0	08			
	E DIA. CAPACITY	,					, .		= 0.004;	3/8" =		2" = 0.010;		= 0.016				
PURGING EQU	IPMENT CODES:	B = B;	ailer; I	BP = Bla	dder Pu	mp; E	SP = Electr	ic Submersil	ole Pump	; PP	= Peristaltic	Pump;	O = Oth	her (Spec	ify)			
					0.000			SAMPLING	DATA		1							
SAMPLED BY (PRINT) / AFFILIAT Jason D				SAMPLI SIGNAT	ER(S) TURE(S):	V	T				SAMPLING	νт.			MPLING DED AT:		
	Amec Foster						0 4	1				INITIATED	1108		EN	DED AT.	1110	
PUMP OR TUB	ING DEPTH IN		7		TUBING MATER			HDPE	_		FIELD-FILT	TERED:	N	0	FILTE	ER SIZE (µm): N	A
WELL (feet):					CODE:			HUFE				quipment Ty	-			NA		
FIELD DECONT		PUMP		No		TUBING:	0.4145	E PRESERV	No			DUPLICATE					Collected	
SAMPLE ID	IPLE CONTAINER	MAT	1		PF	RESERVAT		TOTAL			FINAL	INTENDED			SAMPL EQUIPM			PUMP FLOW RATE
CODE	# CONTAINERS	CODE	VOLU	JME		USED		ADDED IN I		L)	pН	AND/OR	METHO	D	COD			er minute)
MW01002	2	HDPE	12	25		Ice (4 C)		N	A	No	t Recorded	PFAS (Mo	d. EPA 5	37)	APF	>		500
DEMARKO.																T		
REMARKS:									None									
									NOTE									
MATERIAL CO		Amber Glas		= Clear G			ligh Densit	y Polyethyle	ne; Ll	OPE = Lo	w Density Po	olyethylene	; PP :	= Polypro	opylene	;		
	S = Sili UIPMENT CODES	icone; T	= Teflon; = After (Th		ther (Sp Peristalt		B = Bai	ler BD-	Bladder	Pump	ESP = Ela	ectric Submo	arsible P	ump.				
Comr Linto EQ	C.I. INCIAL CODES		= After (11 ? = Revers					w Method (T				Other (Spec		anip,				
NOTES:	1. The above do																	
	2. STABILIZATIO): optiona	llv. + 0 3	2 mg/L or	+ 10% (w	hichever is
	greater) Turbidit									5 207					<i>,,</i> 0.2	<u> </u>		
	Thomas W 11-	neel	0	-	25+	1 0								04/00	Data		6/4.4/0	017
QA/QC'd by	Thomas W. He	11561	- In	romas	Q. 4	lensel								QA/QC	Date		6/14/2	v i /

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE NAME:		Сар				SITE LOCATION: AFFF Release Area 1														
WELL NO:		MW	/01003			S	AMPLE ID	D:		CA	APEC0	1-GV	V-003		DATE:			05/2	4/17	
-									URGING D							_				
WELL DIAMETE	2		NG DIAMI	1/4			5		EN INTERV	15				8 DEP 5.42	TH (feet):	PURGI	E PUMP	TYPE OF		:
(only fill out if ap	. ,						IC DEPTH	I TO V	NATER) >	K WEL	L CAP	PACIT	Y							
	0.42 feet) X 0.08	-			-			CITY	x	TUBING			+ FLOW CI		OLUME					
(only fill out if ap		LOOIPMI	INT VOL.							TODING										
	OR TUBING DEPT	H IN WELL	FINA	= AL PUMP	gallon OR TUE	IS + (BING DEP			foot X eet):	PURG		feet) ITIAT	ED AT:		gallons = PURGING END	gallo DED AT:		L VOLUM	E PURGE	D (liters):
	7					7						111	6		1156	1		1	21	
TIME	VOLUME PURGED ({Purging- Volume])	CUN VOLI PUR (lite	UME GED	PURGE (mL/		DEPTH WATE (feet)	R (sta	oH indar nits)	TEMP. (C)		COND. nS/cm)		DISSOLV OXYGE (mg/L)	N	ORP (mV)		BIDITY TUs)	CO	OR	ODOR
1124	4	4		50		5.42		50	26.93		0.327		0.35		-42.1		3.3	Cl		NA
1132	8	1:		50		5.42		30	27.14		0.317		0.71		-50.0		6.2	Cl		NA
1140	12	2.		50		5.42		.44 .56	27.21		0.321 0.321		0.76		-65.1 -59.2		9.2 .24	Cl		NA
1148 1156	16 20	6		50		5.42		.50	27.32		0.321		0.79		-59.2		.24	Cl		NA
							_											+		
																		1		
WELL CAPACI	TY (Gallons Per F	oot): 0.75	" = 0.02:	1" = 0	.04: 1	Final Val		.57 0.16;	27.35 3" = 0.3		0.320 " = 0.6	5:	0.74 5" = 1.02;	6"	-66.2 = 1.47; 12"	= 5.88	.69			
	DIA. CAPACITY					0.0014;										= 0.016				
PURGING EQU	IPMENT CODES:	B = Ba	iler; I	BP = Bla	dder Pur	np; E	SP = Elec		Submersibl		p;	PP =	Peristaltic	: Pum	p; O = Ot	her (Spe	ecify)			
SAMPLED BY (F	PRINT) / AFFILIAT	ION:			SAMPLE	ER(S)		S	AMPLING E	JATA				SAM	PLING		SA	AMPLING		
	Jason D Amec Foster				SIGNAT	URE(S):	Y	¥	/					INITI	ATED AT:		Eľ	NDED AT:		
PUMP OR TUBI		Wilcolor			TUBING	i		U					FIELD-FIL	TERE	1156 D: N	lo	FILT	FER SIZE	1158 (um): N	NA
WELL (feet):	NG DEPTH IN		7		MATERI CODE:	AL			HDPE				Filtration E					N		
FIELD DECONT		PUMP		No		TUBING:				No				DUPL	ICATE:			None	Collected	
	IPLE CONTAINER		ATION		DE	ESERVAT		IPLE I	PRESERVA TOTAL				INAL		ENDED ANALY		SAMP EQUIP			E PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MAT. CODE	VOLU	JME		USED		A	DDED IN FI		ıL)		pH	1A	D/OR METHO	D	CO			per minute)
MW01003	2	HDPE	12	5		Ice (4 C)		NA			Not	Recorded	PFA	AS (Mod. EPA 5	537)	AF	P		500
								-			-+									
REMARKS:	1							·						L						
										None										
MATERIAL CO		mber Glas		= Clear G			High Den	sity P	olyethylen	e; L	.DPE =	Low	Density P	olyeti	vlene; PP	= Polyp	ropylen	e;		
SAMPLING EQ	S = Sili	cone; T : APP =	= Teflon; • After (Th		ther (Sp Peristalti		B = B	Bailer [.]	BP = I	Bladder	r Pumn	o;	ESP = Ele	ectric	Submersible F	oump:				
		RFPP	= Revers	e Flow P	eristaltio	Pump;	SM = S	traw I	Method (Tu	ibing G					(Specify)	P ,				
	1. The above do 2. STABILIZATIC PH + 0.2 upits T	N CRITER	IA FOR R	ANGE O	F VARIA	TION OF I	LAST THE	REE C	CONSECUT	IVE RE)), and -	olly: - C	2 m=/	+ 109/ /	which comes to
	pH: + 0.2 units To greater) Turbidity										ings < :	20%	saturation (see T	able FS 2200-2	;; option	ally, + 0	.2 mg/L oi	· + 10% (v	vnichever is
QA/QC'd by	Thomas W. He	nsel	Thom	nas 2	(Ifen	ul										QA/Q	C Date		6/14/2	2017

APPENDIX C-10

SEDIMENT SAMPLE COLLECTION LOG

This page intentionally left blank.

amec foster wheeler			SED	IMENT S	AMPLE		ECTIO	ON LOG						
Project Name:		nspection of AFFF ronmental Progra			Project N	umber:		7753	03101.0007					
Contract:		FA8903-16-D			Task Orde	er:			0004					
Installation:	C	ape Canaveral AF			Date:			(05/22/17					
Location ID:		SD0100			Northing/	Easting:		150872	2.12/791942 59					
Technician(s):		Jason Hay	/es											
					TSAMPLE									
	NAM	E (USCS Symbol)	: color, mois	Descr ture, % by wt, plas		cy, toughness	s, dry strengt	h,consistency						
				Organi	c Soils									
Sample Depth (ft):		NA			Sample ID):		CAPE	EC01-SD-001					
MS/MSD Collected:		Yes			Sample D			(05/22/17					
Duplicate ID:		CAPEC-FD-S	D-001		Sample C	ollection T	ime:		1530					
Sample Container Typ	be(s):	4 oz	z HDPE		Sample C	ollection N		Grab						
Preservative(s):		lce (4 °C	1		Analysis/Method(s): PFAS (Modified USEPA 537)									
Time	Intake Depth (in)	Temp. (°C)	pH (units)	SURFACE WA Specific Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Duri	ts/Observations ng Purging sediment, etc.)					
NA	NA	NA	NA	NA	NA	NA	NA		NA					
Sample Depth (ft):		NA		1	Sample D	ate:			NA					
Sample ID:		NA			Sample C	ollection T	ime:		NA					
MS/MSD Collected:		NA			Sample C	ollection N	lethods:		NA					
Duplicate ID:		NA				later Depth			NA					
Sample Container Typ	pe(s):		NA		Water Boo	dy and Wat	ter Quality	Characteristics:						
Preservative(s):		NA						NA						
Analysis/Method(s):		NA												
Location Image:						•		Model, and Seria						
		T	-			Calibrated (Y			NA					
					Calibrated V	Vithin Criteria	ı (Y/N):		NA					
					Stainless Steel Scoop									
			/		Notes: Signature:									
Caption: QA/QC'd by:	SDO Thomas W. Hense	01001 facing north	h 2. 2. Afen		QA/QC Date: 6/14/2017									
	monias w. Hense	Thomas	Ca. yen	ut		QAV	QU Date:	6	/14/2017					

APPENDIX D

LABORATORY ANALYTICAL REPORTS (DVD)

This page intentionally left blank.

APPENDIX E

DATA VALIDATION REPORT

This page intentionally left blank.

DATA VALIDATION REPORT SITE INSPECTION OF AQUEOUS FILM FORMING FOAM (AFFF) RELEASE AREAS ENVIRONMENTAL PROGRAMS WORLDWIDE CAPE CANAVERAL AIR FORCE STATION

Samples Collected Between 22 and 24 May 2017

Prepared for: Air Force Civil Engineer Center Joint Base San Antonio – Lackland, Texas

Prepared by:

Contract FA8903-16-D-0027 Task Order 0004

July 2017

This page intentionally left blank

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	DATA VALIDATION METHODOLOGY
3.0	EXPLANATION OF DATA QUALITY INDICATORS.53.1Laboratory Control Sample Recoveries3.2Matrix Spike Recoveries3.3Surrogate Spike Recoveries3.4Blank Concentrations3.5Laboratory and Field Duplicates
4.0	DEFINITIONS OF QUALIFIERS THAT MAY BE USED DURING DATA VALIDATION7
5.0	QUALIFICATION REASON CODES9
6.0	CHAIN OF CUSTODY AND SAMPLE RECEIPT CONDITION DOCUMENTATION11
7.0	SPECIFIC DATA VALIDATION FINDINGS137.1Per- and Polyfluoroalkyl substances by EPA Method 537137.1.1Holding Times137.1.2Initial Calibrations137.1.3Initial Calibration Verification137.1.4Continuing Calibration Verification137.1.5Laboratory Blanks137.1.6Field and Equipment Blanks137.1.7Laboratory Control Sample Accuracy137.1.8Matrix Spikes/ Matrix Spike Duplicates147.1.9Surrogate Recoveries147.1.10Internal Standard Recoveries157.1.11Data Reporting and Analytical Procedures15
8.0	FIELD DUPLICATE RESULTS17
9.0	SUMMARY AND CONCLUSIONS19
REFERE	NCES

LIST OF TABLES

- Table 1
 Field Samples Submitted to SGS Accutest
- Table 2Field Duplicate Detections
- Table 3 Qualifiers Added During Validation

Site Inspection of Aqueous Film Forming Foam Release Areas, Environmental Programs Worldwide Cape Canaveral Air Force Station, SGS Accutest Job FA44406 DVR July 2017 Page ii

This page intentionally left blank

ACRONYMS AND ABBREVIATIONS

%	percent
μg/L	micrograms per liter
6:2 FTS	6:2 Fluorotelomer sulfonate
8:2 FTS	8:2 Fluorotelomer sulfonate
Amec Foster Wheeler	Amec Foster Wheeler Environment & Infrastructure, Inc.
AFFF	Aqueous Film Forming Foam
001 <i>/</i>	
CCV	Continuing Calibration Verification
CLP	Contract Laboratory Program
COC	Chain of Custody
DoD	Department of Defense
	detection limit
DL	detection limit
EPA	United States Environmental Protection Agency
EtFOSAA	Ethylperfluorooctane sulfonamidoacetic acid
ICAL	initial calibration
ICV	Initial Calibration Verification
ID	Identification
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection
LOQ	Limit of Quantification
MeFOSAA	Methylperfluorooctane sulfonamidoacetic acid
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PFASs	Per- and polyfluoroalkyl substances
PFDA	Perfluorodecanoic acid
PFDoA	Perfluorododecanoic acid
PFNA	Perfluorononanoic acid
PFOA	Perfluorooctanoic acid
PFOS	Perfluorooctanesulfonic acid

PFTeDA	Perfluorotetradecanoic acid
PFTrDA	Perfluorotridecanoic acid
PFUnA	Perfluoroundecanoic acid
QC	Quality Control
QPP	Quality Program Plan
QSM	Quality Systems Manual
RPD	Relative Percent Difference
SGS	SGS Accutest

1.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) collected six water samples, including one field duplicate, one equipment blank, and one field blank, and nine soil or sediment samples, including two field duplicates, between 22 and 24 May 2017, from Cape Canaveral Air Force Station, located in Cape Canaveral, Florida. Amec Foster Wheeler submitted the samples to SGS Accutest (SGS), located in Orlando, Florida on 26 May 2017. SGS assigned the samples to sample delivery group FA44406. SGS analyzed the samples for per- and polyfluoroalkyl substances (PFASs) by United States Environmental Protection Agency (EPA) Method 537. A list of these samples by field sample identification (ID), sample collection date, sample matrix, and laboratory sample ID is presented in Table 1.

Site Inspection of Aqueous Film Forming Foam Release Areas, Environmental Programs Worldwide Cape Canaveral Air Force Station, SGS Accutest Job FA44406 DVR July 2017 Page 2

This page intentionally left blank

2.0 DATA VALIDATION METHODOLOGY

Amec Foster Wheeler performed EPA Stage 4 validation on 10 percent (%) of the samples and EPA Stage 2B validation on the remaining samples associated with this sampling event as indicated on Table 1. The Stage 4 validation includes review of the quality control (QC) results in the laboratory's analytical report and reported on QC summary forms as well as recalculation checks and review of the instrument raw data outputs. The Stage 2B validation includes review of the QC results in the laboratory's analytical report and reported on QC summary forms with no review of the associated raw data. Data from equipment and field blanks did not undergo validation because results from these samples are only used to assess data usability for field samples. This data validation has been performed in general accordance with:

- Amec Foster Wheeler, 2016. Draft, Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas, Environmental Programs Worldwide, Quality Program Plan (QPP), Contract FA8903-16-D-0027, Task Order 0004, December 2016.
- Department of Defense (DoD), 2013. DoD Quality Systems Manual for Environmental Laboratories, Version 5.0. July 2013.
- EPA, 2009. Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry, Version 1.1, September 2009. EPA Document #: EPA/600/R-08/092.
- EPA, 2014. EPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, EPA/540-R-014-002.

The CLP guideline was written specifically for the CLP, and has been modified for the purposes of this data review where it differs from method-specific, QPP-specified, and laboratory-specified QC requirements.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

- Data package and electronic data deliverable completeness;
- Laboratory case narrative review;
- Chain of custody (COC) compliance;
- Holding time compliance;
- QC sample frequency;
- Initial calibration, initial calibration verification (ICV), and continuing calibration verification (CCV) compliance with method-specified criteria;
- Presence or absence of laboratory contamination as demonstrated by laboratory blanks;

- Accuracy and bias as demonstrated by recovery of surrogate spikes, laboratory control sample (LCS), and matrix spike (MS) samples;
- Internal standard recoveries;
- Analytical precision as relative percent difference (RPD) of analyte concentration between laboratory duplicates or MS/MS duplicate (MSD);
- Sampling and analytical precision as RPD of analyte concentration between field duplicates;
- Assessment of field contamination as demonstrated by field and equipment blanks;
- Insofar as possible, the degree of conformance to method requirements and good laboratory practices.

In general, it is important to recognize that no analytical data are guaranteed to be correct, even if all QC audits are passed. Strict QC serves to increase confidence in data, but any reported value may potentially contain error.

3.0 EXPLANATION OF DATA QUALITY INDICATORS

Summary explanations of the specific data quality indicators reviewed during this data quality review are presented below.

3.1 LABORATORY CONTROL SAMPLE RECOVERIES

LCSs and LCS duplicates (LCSDs) are aliquots of analyte-free matrices that are spiked with the analytes of interest for an analytical method, or a representative subset of those analytes. The spiked matrix is then processed through the same analytical procedures as the samples they accompany. LCS recovery is an indication of a laboratory's ability to successfully perform an analytical method in an interference-free matrix.

3.2 MATRIX SPIKE RECOVERIES

MSs and MSDs are prepared by adding known amounts of the analytes of interest for an analytical method, or a representative subset of those analytes, to an aliquot of sample. The spiked sample is then processed through the same extraction, concentration, cleanup, and analytical procedures as the unspiked samples in an analytical batch.

MS recovery and precision are an indication of a laboratory's ability to successfully recover an analyte in the matrix of a specific sample or closely related sample matrices. It is important not to apply MS results for any specific sample to other samples without understanding how the sample matrices are related.

3.3 SURROGATE SPIKE RECOVERIES

Surrogate spikes are used to evaluate accuracy, method performance, and extraction efficiency in each individual sample. Surrogate compounds are compounds not normally found in environmental samples, but which are similar to target analytes in chemical composition and behavior in the analytical process.

3.4 BLANK CONCENTRATIONS

Blank samples are aliquots of analyte free matrix that are used as negative controls to verify that the sample collection, storage, preparation, and analysis system does not produce false positive results.

Equipment blanks are prepared by passing analyte-free water through or over sample collection equipment and collecting the water in sample containers. Equipment blanks are analyzed for the analytical suite required for the project. Equipment blanks are used to monitor for possible sample contamination during the sample collection process and serve as a check on the effectiveness of field decontamination procedures.

Field blanks are prepared by pouring an aliquot of analyte-free water into a sample container in the field. Field blanks are analyzed for the analytical suite required for the project. Field blanks are used to monitor for possible sample contamination originating from the water used for equipment decontamination.

Laboratory, equipment, and field blanks are processed by the laboratory using exactly the same procedures as the field samples. Target analytes should not be found in laboratory blanks.

When target analytes are detected in blanks, analyte concentrations in the associated samples less than ten times the concentration detected in the blank will be B qualified.

3.5 LABORATORY AND FIELD DUPLICATES

Laboratory and field duplicate analysis verifies acceptable method precision by the laboratory at the time of preparation and analysis and/or sampling precision at the time of collection.

4.0 DEFINITIONS OF QUALIFIERS THAT MAY BE USED DURING DATA VALIDATION

- **B** The analyte was detected in the sample and an associated blank and the concentration detected in the sample was less than ten times the concentration detected in the blank.
- **U** The analyte was analyzed for, but was not detected.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- **Q** The analyte is both B qualified because of blank detection and J qualified because of an additional QC issue.
- **UJ** The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- **R** The sample result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Site Inspection of Aqueous Film Forming Foam Release Areas, Environmental Programs Worldwide Cape Canaveral Air Force Station, SGS Accutest Job FA44406 DVR July 2017 Page 8

This page intentionally left blank

5.0 QUALIFICATION REASON CODES

Amec Foster Wheeler applied the following reason code to the data during validation:

- FDD Field duplicate imprecision
- LCL Low LCS recovery. Analytical result may be biased low.
- MSL Low MS/MSD recovery. Analytical result may be biased low.
- SGH High surrogate recovery. Analytical result may be biased high.
- SGL Low surrogate recovery. Analytical result may be biased low.
- TR Detected concentration is less than the limit of quantification (LOQ).

Site Inspection of Aqueous Film Forming Foam Release Areas, Environmental Programs Worldwide Cape Canaveral Air Force Station, SGS Accutest Job FA44406 DVR July 2017 Page 10

This page intentionally left blank

6.0 CHAIN OF CUSTODY AND SAMPLE RECEIPT CONDITION DOCUMENTATION

The samples were received at the laboratory under proper COC, intact, properly preserved, and at temperatures less than the QPP-specified maximum of 10 degrees Celsius.

Site Inspection of Aqueous Film Forming Foam Release Areas, Environmental Programs Worldwide Cape Canaveral Air Force Station, SGS Accutest Job FA44406 DVR July 2017 Page 12

This page intentionally left blank

7.0 SPECIFIC DATA VALIDATION FINDINGS

Results from these samples may be considered usable with the limitations and exceptions described Sections 7.1 through 8.0.

7.1 PER- AND POLYFLUOROALKYL SUBSTANCES BY EPA METHOD 537

PFAS results generated by SGS are usable with the limitations described in Sections 7.1.1 through 7.1.10.

7.1.1 Holding Times

The aqueous samples were extracted for PFASs within the QPP-specified maximum holding time of 14 days from sample collection and the extracts were analyzed within the QPP-specified maximum hold time of 28 days from extraction. The solid samples were extracted for PFASs within the method-recommended maximum holding time of 60 days from sample collection and the extracts were analyzed within the method-recommended 30 days from extraction.

7.1.2 Initial Calibrations

The ICALs associated with the analysis of these samples met the Quality Systems Manual (QSM)-specified criteria of correlation coefficients greater than 0.99 and the calibration standards calculating to 70 to 130% of its true concentrations.

7.1.3 Initial Calibration Verification

ICV recoveries were within the QPP-specified 75% to 125% limits, with the following exception:

• Ethylperfluorooctane sulfonamidoacetic acid (EtFOSAA) recovery was high at 129% in the ICV associated with samples CAPEC01-GW-001, CAPEC01-GW-002, CAPEC01-GW-003, and CAPEC-FD-GW-001. EtFOSAA was not detected in these samples and data usability is not adversely affected by the potential high analytical bias.

7.1.4 Continuing Calibration Verification

CCV recoveries were within the QPP specified 75% to 125% limits.

7.1.5 Laboratory Blanks

PFASs were not detected in the laboratory blanks associated with these samples.

7.1.6 Field and Equipment Blanks

PFASs were not detected in the field and equipment blanks associated with these samples.

7.1.7 Laboratory Control Sample Accuracy

Laboratory Control Sample (LCS) recoveries were within QPP-specified 70 to 130% limits, with the following exception:

• Perfluorododecanoic acid (PFDoA) (64%), perfluorotridecanoic acid (PFTrDA) (62%), perfluorotetradecanoic aicd (PFTeDA) (67%), 6:2 fluorotelomer sulfonate (6:2 FTS) (140%), and

8:2 fluorotelomer sulfonate (8:2 FTS) (136%) recoveries were outside specified limits in the LCS associated with samples CAPEC01-GW-001, CAPEC01-GW-002, CAPEC01-GW-003, and CAPEC-FD-GW-001. Data limitations are summarized below.

- Amec Foster Wheeler UJ qualified the non-detected PFDoA, PFTrDA, and PFTeDA results from these samples because of the potential low analytical bias. (Qualifier and reason code: UJ-LCL)
- 6:2 FTS and 8:2 FTS were not detected in these samples and data usability is not adversely affected by the potential high analytical bias.

7.1.8 Matrix Spikes/ Matrix Spike Duplicates

SGS performed MS and MSD analyses on samples CAPEC01-SD-001, CAPEC01-SO-002, and CAPEC01-GW-002. Recoveries were within the QPP-specified 70 to 130% limits and RPDs between MS and MSD results were less than the QPP-specified maximum of 30%, with the following exceptions.

- Perfluorooctanesulfonic acid (PFOS) recovery was low at 69% in the MSD and 6:2 FTS recovery was high at 133% in the MS performed on sample CAPEC01-GW-002. Data limitations are summarized below.
 - Amec Foster Wheeler J qualified the detected PFOS result from this sample because of the potential low analytical bias. (Qualifier and reason code: J-MSL)
 - 6:2 FTS was not detected in this sample and data usability is not adversely affected by the potential high analytical bias.
- PFDoA (68%-MS), PFTrDA (55%, 55%), PFTeDA (43%, 41%), PFOS (68%-MS), and methylperfluorooctane sulfonamidoacetic acid (MeFOSAA) (68%-MS) recoveries were low in the MS and/or MSD performed on sample CAPEC01-SD-001. Amec Foster Wheeler J qualified the detected PFOS results and UJ qualified the non-detected PFDoA, PFTrDA, PFTeDA, and MeFOSAA results from this sample and its field duplicate CAPEC-FD-SD-001 because of the potential low analytical bias. (Qualifier and reason code: J/UJ-MSL)

7.1.9 Surrogate Recoveries

Surrogate recoveries were within the QPP-specified 70 to 130% limits, with the following exceptions:

- Recovery of the surrogate compound d5-EtFOSAA was low at 69% in the analysis of sample CAPEC01-SD-001. This recovery was within laboratory-specified limits and SGS did not re-extract or reanalyze this sample. Amec Foster Wheeler UJ qualified the non-detected EtFOSAA and MeFOSAA results from this sample because of the potential low analytical bias. (Qualifier and reason code: UJ-SGL)
- Recovery of the surrogate compound ¹³C₂-perfluorodecanoic acid (PFDA) was high at 138% in the analysis of sample CAPEC01-GW-002. Data limitations are summarized below.

- Amec Foster Wheeler J qualified the detected perfluorononanoic acid (PFNA) and PFDA results from this sample because of the potential high analytical bias. (Qualifier and reason code: J-SGH)
- Perfluoroundecanoic acid (PFUnA), PFDoA, PFTeDA, PFTrDA, and 8:2 FTS were not detected in this sample and data usability is not adversely affected by the potential high analytical bias.

7.1.10 Internal Standard Recoveries

Internal standard recoveries were within the QPP-specified limits of 50 to 150% of the average area counts measured during the initial calibration.

7.1.11 Data Reporting and Analytical Procedures

SGS J qualified analytes with concentrations between the detection limit (DL) and the LOQ. Amec Foster Wheeler agrees that these results are quantitatively uncertain and has J qualified these results. (Qualifier and reason code: J-TR)

SGS calibrates their instrument using linear and branched isomers, but the solution used for calibration verification and spiking contains linear isomers only. The analytical software is unable to correctly autointegrate analytes when peaks for both linear and branched isomers are present, so the initial calibrations, CCVs, and samples containing both linear and branched isomers require manual integration. Other software limitations include not being able to print more than one chromatogram for each analyte and having the printed baselines appear high due to poor printing resolution. Since the manual integrations are performed to ensure that both linear and branched isomers are included in the analytical results, Amec Foster Wheeler's review of the manual integrations is a check to make sure both linear and branched isomer peaks are fully integrated.

A proficiency testing sample, PTRCK-GW-001, was submitted to SGS on 23 May 2017 containing 0.100 micrograms per liter (μ g/L) of perfluorooctanoic acid (PFOA) and 0.200 μ g/L of PFOS. SGS analyzed the sample and detected 0.0977 μ g/L for PFOA and 0.153 μ g/L for PFOS, results which are within the established acceptance range of 60 to 140% of the spike value

8.0 FIELD DUPLICATE RESULTS

Amec Foster Wheeler collected field duplicates with samples CAPEC01-GW-001 (CAPEC-FD-GW-001), CAPEC01-SD-001 (CAPEC-FD-SD-001), and CAPEC01-SO-005 (CAPEC-FD-SO-001). Detected results and RPDs for the field duplicate are summarized in Table 2. Precision values were within the QPP-specified limits of less than 30% RPD or the difference between analytical results less than the LOQ, with the following exception.

• The RPD between PFOS results from sample CAPEC01-SO-005 and its field duplicate CAPEC-FD-SO-001 was high at 114%. Amec Foster Wheeler J qualified the detected PFOS results from these samples because of potential sampling or analytical imprecision. (Qualifier and reason code: J-FDD)

9.0 SUMMARY AND CONCLUSIONS

Amec Foster Wheeler evaluated a total of 208 data records from field samples during the validation. Amec Foster Wheeler J or UJ qualified 72 records (35%) as estimated values because of field duplicate imprecision, low LCS recoveries, low MS/MSD recoveries, high or low surrogate recoveries, and/or analyte concentrations between the DL and the LOQ. Qualified data are summarized in Table 3.

REFERENCES

- Amec Foster Wheeler, 2016. Draft, Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas, Environmental Programs Worldwide, Quality Program Plan (QPP), Contract FA8903-16-D-0027, Task Order 0004, December 2016.
- Department of Defense (DoD), 2017. DoD Quality Systems Manual for Environmental Laboratories, Version 5.1. January 2017.
- EPA, 2009. Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS), Version 1.1, September 2009. EPA Document #: EPA/600/R-08/092.
- EPA, 2014. EPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, EPA/540-R-014-002.

TABLES

Field Samples Submitted to SGS Accutest

Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas

Environmental Programs Worldwide

Cape Canaveral Air Force Station Florida

Sample Identification	Collection Date	Sample Matrix	Laboratory SDG	Laboratory Sample Identification	Notes
CAPEC01-GW-001	24-May-17	Groundwater	FA44406	FA44406-1	Stage IV
CAPEC01-SD-001	22-May-17	Sediment	FA44406	FA44406-2	MS/MSD, Stage IV
CAPEC01-SO-001	22-May-17	Soil	FA44406	FA44406-3	Stage IV
CAPEC01-SO-002	22-May-17	Soil	FA44406	FA44406-4	MS/MSD
CAPEC01-SO-003	22-May-17	Soil	FA44406	FA44406-5	
CAPEC01-SO-004	22-May-17	Soil	FA44406	FA44406-6	
CAPEC01-SO-005	22-May-17	Soil	FA44406	FA44406-7	
CAPEC01-SO-006	22-May-17	Soil	FA44406	FA44406-8	
CAPEC-EB-001	22-May-17	QC Water	FA44406	FA44406-9	Equipment Blank
CAPEC-FB-001	22-May-17	QC Water	FA44406	FA44406-10	Field Blank
CAPEC-FD-SD-001	22-May-17	Sediment	FA44406	FA44406-11	Field Duplicate of Sample CAPEC01-SD-001
CAPEC-FD-SO-001	22-May-17	Soil	FA44406	FA44406-12	Field Duplicate of Sample CAPEC01-SO-005
CAPEC01-GW-002	24-May-17	Groundwater	FA44406	FA44406-13	MS/MSD
CAPEC01-GW-003	24-May-17	Groundwater	FA44406	FA44406-14	
CAPEC-FD-GW-001	24-May-17	Groundwater	FA44406	FA44406-15	Field Duplicate of Sample CAPEC01-GW-001

Notes:

MS/MSD = Matrix Spike / Matrix Spike Duplicate

SDG = Sample Delivery Group

Field Duplicate Detections

Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas

Environmental Programs Worldwide

Cape Canaveral Air Force Station, Florida

Analyte	LOQ	Primary Sample	Field Duplicate Units		RPD	Notes		
Samples CAPEC01-GW-001 and CAPEC-FD-GW-001								
PFHxA	0.015	0.0300	0.0297	μg/L	1.0%			
PFHpA	0.015	0.0141 J	0.0136 J	μg/L	3.6%			
PFOA	0.015	0.0262	0.0281	μg/L	7.0%			
PFBS	0.015	0.0203	0.0211	μg/L	3.9%			
PFHxS	0.015	0.0507	0.0539	μg/L	6.1%			
PFOS	0.015	0.0409	0.042	μg/L	2.9%			
Samples CAPEC01-SD-001 and CAPEC-FD-SD-001								
PFHxA	0.0020	0.00234 J	0.00117 J	mg/kg	67%	± LOQ		
PFHpA	0.0020	0.00217 J	0.00127 J	mg/kg	52%	± LOQ		
PFOA	0.0020	0.00227 J	0.00134 J	mg/kg	52%	± LOQ		
PFNA	0.0020	0.00133 J	0.0019 U	mg/kg	NC	± LOQ		
PFDA	0.0020	0.00191 J	0.00147 J	mg/kg	26%			
PFUnA	0.0020	0.00109 J	0.000979 J	mg/kg	11%			
PFHxS	0.0020	0.00136 J	0.000969 J	mg/kg	34%	± LOQ		
PFOS	0.0020	0.0303	0.0259	mg/kg	16%			
	Samples	CAPEC01-SO-005 a	nd CAPEC-FD-SO-001	L				
PFHxA	0.0020	0.00127 J	0.000373 J	mg/kg	109%	± LOQ		
PFHpA	0.0020	0.00120 J	0.0010 U	mg/kg	NC	± LOQ		
PFOA	0.0020	0.000727 J	0.0010 U	mg/kg	NC	± LOQ		
PFNA	0.0020	0.000738 J	0.0010 U	mg/kg	NC	± LOQ		
PFDA	0.0020	0.00186 J	0.0010 U	mg/kg	NC	± LOQ		
PFUnA	0.0020	0.00108 J	0.0010 U	mg/kg	NC	± LOQ		
PFDoA	0.0020	0.00118 J	0.000778 J	mg/kg	41%	± LOQ		
PFTrDA	0.0020	0.000530 J	0.0010 U	mg/kg	NC	± LOQ		
PFTeDA	0.0020	0.000663 J	0.0010 U	mg/kg	NC	± LOQ		
PFOS	0.0020	0.00327	0.000897 J	mg/kg	114%	J-FDD		

Notes:

μg/L = micrograms per liter LOQ = limit of quantification mg/kg = milligrams per kilogram NC = not calculable PFBS = perfluorobutanesulfonic acid PFDA = perfluorodecanoic acid PFDA = perfluorodecanoic acid PFHpA = perfluoroheptanoic acid PFHxA = perfluorohexanoic acid PFHxS = perfluorohexanesulfonic acid PFNA = perfluorononanoic acid PFOA = perfluorooctanoic acid PFOS = perfluorooctanesulfonic acid PFTeDA = perfluorotetradecanoic acid PFTrDA = perfluorotridecanoic acid PFUnA = perfluoroundecanoic acid RPD = relative percent difference

Qualifier Definitions:

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U = The analyte was analyzed for, but was not detected above the reported limit of detection.

Reason Codes:

- FDD = Field duplicate imprecision
- ± LOQ = The difference ebtween analyte concentrations is less than the LOQ, indicating acceptable sampling and analytical precision.

Qualifiers Added During Validation Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas

Environmental Programs Worldwide

Cape Canaveral Air Force Station, Florida

			Validation Qualifiers and Reason Codes			
Sample Identification	Analyte	Results				
CAPEC01-GW-001	PFDoA	0.012 μg/L	UJ LCL			
CAPEC01-GW-001	PFHpA	0.0141 μg/L	J TR			
CAPEC01-GW-001	PFTeDA	0.012 μg/L	UJ LCL			
CAPEC01-GW-001	PFTrDA	0.012 μg/L	UJ LCL			
CAPEC01-GW-002	PFDA	0.00836 μg/L	J SGH, TR			
CAPEC01-GW-002	PFDoA	0.012 μg/L	UJ LCL			
CAPEC01-GW-002	PFNA	0.0136 μg/L	J SGH, TR			
CAPEC01-GW-002	PFOS	0.0942 μg/L	J MSL			
CAPEC01-GW-002	PFTeDA	0.012 μg/L	UJ LCL			
CAPEC01-GW-002	PFTrDA	0.012 μg/L	UJ LCL			
CAPEC01-GW-003	PFDoA	0.012 µg/L	UJ LCL			
CAPEC01-GW-003	PFNA	0.00796 µg/L	J TR			
CAPEC01-GW-003	PFTeDA	0.012 μg/L	UJ LCL			
CAPEC01-GW-003	PFTrDA	0.012 μg/L	UJ LCL			
CAPEC01-SD-001	EtFOSAA	0.0077 mg/kg	UJ SGL			
CAPEC01-SD-001	MeFOSAA	0.0077 mg/kg	UJ MSL, SGL			
CAPEC01-SD-001	PFDA	0.00191 mg/kg	J TR			
CAPEC01-SD-001	PFDoA	0.0019 mg/kg	UJ MSL			
CAPEC01-SD-001	PFHpA	0.00217 mg/kg	J TR			
CAPEC01-SD-001	PFHxA	0.00234 mg/kg	J TR			
CAPEC01-SD-001	PFHxS	0.00136 mg/kg	J TR			
CAPEC01-SD-001	PFNA	0.00133 mg/kg	J TR			
CAPEC01-SD-001	PFOA	0.00227 mg/kg	J TR			
CAPEC01-SD-001	PFOS	0.0303 mg/kg	J MSL			
CAPEC01-SD-001	PFTeDA	0.0019 mg/kg	UJ MSL			
CAPEC01-SD-001	PFTrDA	0.0019 mg/kg	UJ MSL			
CAPEC01-SD-001	PFUnA	0.00109 mg/kg	J TR			
CAPEC01-SO-001	PFHpA	0.000826 mg/kg	J TR			
CAPEC01-SO-001	PFHxA	0.00162 mg/kg	J TR			
CAPEC01-SO-001	PFHxS	0.00113 mg/kg	J TR			
CAPEC01-SO-002	PFHxA	0.000414 mg/kg	J TR			
CAPEC01-SO-002	PFHxS	0.000746 mg/kg	J TR			
CAPEC01-SO-002	PFOS	0.0017 mg/kg	J TR			
CAPEC01-SO-002	EtFOSAA	0.00192 mg/kg	J TR			
CAPEC01-SO-003	MeFOSAA	0.00192 mg/kg	J TR			
CAPEC01-SO-003	PFDA	0.000192 mg/kg	J TR			
CAPEC01-SO-003	PFHxA	0.000502 mg/kg	J TR			
CAPEC01-SO-003	PFOS	0.00127 mg/kg	J TR			
CAPEC01-SO-003	PFUnA	0.00127 mg/kg	J TR			
	PFDoA	0.00102 mg/kg	J TR			
CAPEC01-SO-004	PFHxA	0.000227 mg/kg	J TR			
CAPEC01-SO-004			J TR			
CAPEC01-SO-005	PFDA PFDoA	0.00186 mg/kg				
CAPEC01-SO-005		0.00118 mg/kg	J TR			
CAPEC01-SO-005	PFHpA	0.0012 mg/kg	J TR			
CAPEC01-SO-005	PFHxA	0.00127 mg/kg	J TR			
CAPEC01-SO-005	PFNA	0.000738 mg/kg	J TR			
CAPEC01-SO-005	PFOA	0.000727 mg/kg	J TR			
CAPEC01-SO-005	PFOS	0.00327 mg/kg	J FDD			
CAPEC01-SO-005	PFTeDA	0.000663 mg/kg	J TR			

Qualifiers Added During Validation Site Inspection of Aqueous Film Forming Foam (AFFF) Release Areas Environmental Programs Worldwide

Cape Canaveral Air Force Station, Florida

Sample Identification	Analyte	Results	Validation Qualifiers and Reason Codes		
CAPEC01-SO-005	PFTrDA	0.00053 mg/kg	J TR		
CAPEC01-SO-005	PFUnA	0.00108 mg/kg	J TR		
CAPEC01-SO-006	PFDoA	0.000864 mg/kg	J TR		
CAPEC01-SO-006	PFHxA	0.000307 mg/kg	J TR		
CAPEC01-SO-006	PFOS	0.000562 mg/kg	J TR		
CAPEC-FD-GW-001	PFDoA	0.012 μg/L	UJ LCL		
CAPEC-FD-GW-001	PFHpA	0.0136 μg/L	J TR		
CAPEC-FD-GW-001	PFTeDA	0.012 μg/L	UJ LCL		
CAPEC-FD-GW-001	PFTrDA	0.012 μg/L	UJ LCL		
CAPEC-FD-SD-001	MeFOSAA	0.0074 mg/kg	UJ MSL		
CAPEC-FD-SD-001	PFDA	0.00147 mg/kg	J TR		
CAPEC-FD-SD-001	PFDoA	0.0019 mg/kg	UJ MSL		
CAPEC-FD-SD-001	PFHpA	0.00127 mg/kg	J TR		
CAPEC-FD-SD-001	PFHxA	0.00117 mg/kg	J TR		
CAPEC-FD-SD-001	PFHxS	0.000969 mg/kg	J TR		
CAPEC-FD-SD-001	PFOA	0.00134 mg/kg	J TR		
CAPEC-FD-SD-001	PFOS	0.0259 mg/kg	J MSL		
CAPEC-FD-SD-001	PFTeDA	0.0019 mg/kg	UJ MSL		
CAPEC-FD-SD-001	PFTrDA	0.0019 mg/kg	UJ MSL		
CAPEC-FD-SD-001	PFUnA	0.000979 mg/kg	J TR		
CAPEC-FD-SO-001	PFDoA	0.000778 mg/kg	J TR		
CAPEC-FD-SO-001	PFHxA	0.000373 mg/kg	J TR		
CAPEC-FD-SO-001	PFOS	0.000897 mg/kg	J FDD, TR		

Notes:

μg/L = micrograms per liter
EtFOSAA = ethylperfluorooctane sulfonamidoacetic acid
MeFOSAA = methylperfluorooctane sulfonamidoacetic acid
mg/kg = milligrams per kilogram
PFDA = perfluorodecanoic acid
PFDoA = perfluorododecanoic acid
PFHpA = perfluoroheptanoic acid

PFHxA = perfluorohexanoic acid PFHxS = perfluorohexanesulfonic acid PFNA = perfluorononanoic acid PFOA = perfluorooctanoic acid PFOS = perfluorootetradecanoic acid PFTeDA = perfluorotetradecanoic acid PFTrDA = perfluorotridecanoic acid

Validation Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Reason Codes

- FDD = Field duplicate imprecision.
- LCL = Low laboratory control sample recovery. Analytical result may be biased low.
- MSL = Low matrix spike recovery. Analytical result may be biased low.
- SGH = High surrogate recovery. Analytical result may be biased high.
- SGL = Low surrogate recovery. Analytical result may be biased low.
- TR = Detected concentration is less than the limit of quantification.

APPENDIX F

IDW NON-HAZARDOUS WASTE MANIFEST

NON-HAZARDOUS WASTE MANIFEST

NON-HAZARDOUS MANIFEST	1. Generator's US EPA ID No. Manifest Doc No. 1 0 1 9 1			2. Page 1 d	of					
NON-TIAZARDOOS MANIFEST				10191		1				
3. Generator's Name and Mailing Address: Cape Canaveral Air Force Station 1224 Jupiter Street, PAFB FL 32925					A. Manifest Number					
4. Generator's Phone: Michael	K Bowers 321-853-4289					B. State (Generator's	ID		
5. Transporter 1 Company Name		6. US EPA ID	Number			THE REAL		-		
	6. US EPA ID Number			C. State Tr	ansporter's I	D				
EVERGREEN WASTE LLC	GAR 000 034 710				D. Transporter's Phone 7707395600					
7. Transporter 2 Company Name				E. State Transporter's ID F. Transporter's Phone						
9. Designated Facility Name and Site							ie			
5. Designated Facility Name and Site	Address	10. US EPA I	DNumber		G. State Facility ID					
Covanta							706 771 0	00		
3920 Goshen Industrial Blvd					H. State Facility Phone 706-771-9100					
Augusta GA 30906										
G 11. Description of Waste Materials			12. Co No.	ontainers Type	13. Total Quantity	14. Unit Wt./Vol.	I. M	sc. Commen	ts	
A NONREGULATED MATERIAL, NONHAZARDOUS			3	DM	165	G				
B NONREGULATED MATERIAL, NONHAZARDOUS			1	DM	350	Р				
O R C										
									Carrie	
D										
J. Additional Descriptions for Mater 11A: IDW Water	ials Listed Above		K. Dispo	sal Location	1					
11 B: IDW Soils			Cell				Level			
			Grid							
15. Special Handling Instructions and MATERIALS FOR INCINERATION ON	ALX.	TRACTINE #	17-	209			1			
Purchase Order #		EMERGENCY CON			256-759-3	922 DANIELLE	WASKE			
16. GENERATOR'S CERTIFICATE:										
I hereby certify that the above-descril accurately described, classified and pa			ed by CFR I	Part 261 or	any applicable	e state law, h	ave been fu	ly and		
Printed Name	and been and bre in prope						Month	Day	Year	
MICHAEL K. L	Dalla						11	20	57	
17. Transporter 1 Acknowledgement	of Receipt of Materials									
Printed Name							Month	Day	Year	
Day O Maddin	Gen 3						17	20	17	
18. Transporter 2 Acknowledgement	of Receipt of Materials									
Printed Name		Signature		1. S. S.			Month	Day	Year	
the start start shares										
19. Certificate of Final Treatment/Dis I certify, on behalf of the above listed applicable laws, regulations, permits	treatment facility, that t		dge, the a	bove-descr	ibed waste w	as managed	n complianc	e with all		
20. Facility Owner or Operator: Certi	ification of receipt of non	-hazardous materials co	wered by t	his manifes	st.					
Printed Name	Sheet Sectors	Signature					Month	Day	Year	
White- TREATMENT, STORAGE, DISPO Pink- FACILITY USE O		Blue- GENERATOR Gold- TRANSPORTER			Ye	llow- GENER/	TOR #1 CO	γ		